Skip to main content
Log in

Molecular cytogenetic of the Amoy croaker, Argyrosomus amoyensis (Teleostei, Sciaenidae)

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The family Sciaenidae is remarkable for its species richness and economic importance. However, the cytogenetic data available in this fish group are still limited, especially those obtained using fluorescence in situ hybridization (FISH). In the present study, the chromosome characteristics of a sciaenid species, Argyrosomus amoyensis, were examined with several cytogenetic methods, including dual-FISH with 18S and 5S rDNA probes, and a self-genomic in situ hybridization procedure (Self-GISH). The karyotype of A. amoyensis comprised 2n=48 acrocentric chromosomes. A single pair of nucleolar organizer regions (NORs) was located at the proximal position of chromosome 1, which was positive for silver nitrate impregnation (AgNO3) staining and denaturation-propidium iodide (DPI) staining but negative for Giemsa staining and 4',6-diamidino-2-phenylindole (DAPI) staining, and was confirmed by FISH with 18S rDNA probes. The 5S rDNA sites were located at the centromeric region of chromosome 3. Telomeric FISH signals were detected at all chromosome ends with different intensities, but internal telomeric sequences (ITSs) were not found. Self-GISH resulted in strong signals distributed at the centromeric regions of all chromosomes. C-banding revealed not only centromeric heterochromatin, but also heterochromatin that located on NORs, in interstitial and distal telomeric regions of specific chromosomes. These results suggest that the karyotype of Amoy croaker was relatively conserved and primitive. By comparison with the reported cytogenetic data of other sciaenids, it can be deduced that although the karyotypic macrostructure and chromosomal localization of 18S rDNA are conserved, the distribution of 5S rDNA varies dynamically among sciaenid species. Thus, the 5S rDNA sites may have different evolutionary dynamics in relation to other chromosomal regions, and have the potential to be effective cytotaxonomic markers in Sciaenidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accioly I V, Molina W F. 2008. Cytogenetic studies in Brazilian marine Sciaenidae and Sparidae fishes (Perciformes). Genet. Mol. Res., 7 (2): 358–370, https://doi.org/10.4238/vol7-2gmr427.

    Article  Google Scholar 

  • Aguilar C T, Galetti Jr P M. 1997. Chromosomal studies in South Atlantic serranids (Pisces, Perciformes). Cytobios, 89: 89–105.

    Google Scholar 

  • Arai R. 2011. Fish Karyotypes: A Check List. Springer, Tokyo, Japan. p.174-175.

    Book  Google Scholar 

  • Brum M J I, Galetti Jr P M. 1997. Teleostei ground plan karyotype. J. Comp. Biol., 2: 2–91.

    Google Scholar 

  • Cai M Y, Liu X D, Chen Z Y, Cai B B, Ke C H. 2013. Characterization of Pacific abalone (Haliotis discus hannai) karyotype by C-banding and fluorescence in situ hybridization with rDNA. J. Fish. China, 37 (7): 1 002–1 008, https://doi.org/10.3724/SP.J.1231.2013.38481. (in Chinese with English abstract)

    Article  Google Scholar 

  • Calado L L, Bertollo L A C, CioffiM B, Costa G W, Jacobina U P, Molina W F. 2014. Evolutionary dynamics of rDNA genes on chromosomes of the Eucinostomus fishes: cytotaxonomic and karyoevolutive implications. Genet. Mol. Res., 13 (4): 9 951–9 959, https://doi.org/10.4238/2014.November.27.24.

    Article  Google Scholar 

  • Canela A, Vera E, Klatt P, Blasco M A. 2007. High-throughput telomere length quantification by fish and its application to human population studies. Proc. Natl. Acad. Sci. USA., 104 (13): 5 300–5 305, https://doi.org/10.1073/pnas.0609367104.

    Article  Google Scholar 

  • Cao K, Zheng J, Wang Z Y, Liu X D, Cai M Y. 2015. Genome size and physical length of chromosomes in Nibea albiflora. South China Fish. Sci., 11 (4): 65–70, https://doi.org/10.3969/j.issn.2095-0780.2015.04.010. (in Chinese with English abstract)

    Google Scholar 

  • Chao L N, Musick J A. 1977. Life history, feeding habits, and functional morphology of juvenile sciaenid fishes in the York River estuary, Virginia. Fish. Bull., 75 (4): 657–702.

    Google Scholar 

  • Coen E S, Dover G A. 1983. Unequal exchanges and the coevolution of X and Y rDNA arrays in Drosophila melanogaster. Cell, 33 (3): 849–855, https://doi.org/10.1016/0092-8674(83)90027-2.

    Article  Google Scholar 

  • Da Silva M, Matoso D A, Vicari M R, de Almeida M C, Margarido V P, Artoni R F. 2011. Physical mapping of 5S rDNA in two species of knifefishes: Gymnotus pantanal and Gymnotus paraguensis (gymnotiformes). Cytogenet. Genome Res., 134 (4): 303–307, https://doi.org/10.1159/000328998.

    Article  Google Scholar 

  • de Mello Affonso P R A, Galetti Jr P M. 2005. Chromosomal diversification of reef fishes from genus Centropyge (perciformes, pomacanthidae). Genetica, 123 (3): 227–233, https://doi.org/10.1007/s10709-004-3214-x.

    Article  Google Scholar 

  • Drouin G, de Sá M M. 1995. The concerted evolution of 5S ribosomal genes linked to the repeat units of other Multigene Families. Mol. Biol. Evol., 12 (3): 481–493, https://doi.org/10.1093/oxfordjournals.molbev.a040223.

    Google Scholar 

  • Feldberg E, Porto J I R, dos Santos E B P, Valentim F C S. 1999. Cytogenetic studies of two freshwater sciaenids of the genus Plagioscion (Perciformes, sciaenidae) from the central Amazon. Genet. Mol. Biol., 22 (3): 351–356, https://doi.org/10.1590/S1415-47571999000300011.

    Article  Google Scholar 

  • Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida M C. 1997. Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma, 106 (1): 44–52, https://doi.org/10.1007/s004120050223.

    Article  Google Scholar 

  • Galetti Jr P M, Aguilar C T, Molina W F. 2000. An Overview of Marine Fish Cytogenetics. Springer, Netherlands. p.55-62, https://doi.org/10.1007/978-94-017-2184-4_6.

    Book  Google Scholar 

  • Gomes V, Vazzoler A E A D M, Phan V N. 1983a. Estudos cariotípicos de peixes da família Sciaenidae (Teleostei, Perciformes) da região de Cananéia, SP, Brasil. 1. Sobre o cariótipo de Micropogonias furnieri (Desmarest, 1823). Bol. Inst. Oceanogr., 32 (2): 137–142.

    Article  Google Scholar 

  • Gomes V, Vazzoler A E A D M, Phan V N. 1983b. Estudos cariotípicos de peixes da família Sciaenidae (Teleostei, Perciformes) da região de Cananéia, SP, Brasil: 2. Sobre o cariótipo de Menticirrhus americanus (Linnaeus, 1758). Bol. Inst. Oceanogr., 32 (2): 187–191.

    Article  Google Scholar 

  • Gornung E. 2013. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet. Genome Res., 141: 141–90. https://doi.org/10.1159/000354832.

    Google Scholar 

  • Howell W M, Black D A. 1980. Controlled silver-staining of nucleolus organizer regions with protective colloidal developer: a 1-step method. Experientia, 36 (8): 1 014–1 015, https://doi.org/10.1007/BF01953855.

    Article  Google Scholar 

  • Ijdo J W, Wells R A, Baldini A, Reeders S T. 1991. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res., 19 (17): 4780, https://doi.org/10.1093/nar/19.17.4780.

    Article  Google Scholar 

  • Jian L J, Yang Y K, Liu X D, Chen Q K, Wang Z Y. 2013. The cross breeding and genetic analysis of hybrids of Larimichthys crocea (♀) and Nibea miichthioides (♂). J. Fish. China, 37 (6): 801–808, https://doi.org/10.3724/SP.J.1231.2013.38438. (in Chinese with English abstract)

    Article  Google Scholar 

  • Junior P M G, Molina W F, Affonso P R A M, Aguilar C T. 2006. Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers. Genetica, 126 (1–2): 161–177, https://doi.org/10.1007/s10709-005-1446-z.

    Article  Google Scholar 

  • Levan A, Fredga K, Sandberg A A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52 (2): 201–220, https://doi.org/10.1111/j.1601-5223.1964.tb01953.x.

    Article  Google Scholar 

  • Longhurst A R, Pauly D. 1987. Ecology of Tropical Oceans. Academic Press Inc., San Diego. p.407.

    Google Scholar 

  • Markova M, Vyskot B. 2009. New horizons of genomic in situ hybridization. Cytogenet. Genome Res., 126 (4): 368–375, https://doi.org/10.1159/000275796.

    Article  Google Scholar 

  • Martins C, Galetti Jr P M. 1999. Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res., 7 (5): 363–367, https://doi.org/10.1023/A:1009216030316.

    Article  Google Scholar 

  • Meng Q W. 1996. Systematics of Fishes. China Agriculture Press, Beijing, China. p.721-722. (in Chinese).

    Google Scholar 

  • Nelson J S, Grande T C, Wilson M V H. 2016. Fishes of the World. 5 th edn. John Wiley and Sons Inc., New York. p.498.

    Book  Google Scholar 

  • Ocalewicz K. 2013. Telomeres in fishes. Cytogenet. Genome Res., 141(2-3): 114–125, https://doi.org/10.1159/000354278.

    Article  Google Scholar 

  • Ojima Y, Kikuno T. 1987. Karyotypes of a Gobiesociform and two Perciform fishes (Teleostei). Proc. Japan Acad. Ser.B, 63 (6): 201–204, https://doi.org/10.2183/pjab.63.201.

    Article  Google Scholar 

  • Pereira A, Bedó G, Pereira J. 1988. Estudio cromosomico preliminar de Micropogonias furnieri Desmarest, 1823 (Perciformes, Sciaenidae). Bol. Soc. Zool. Uruguay (2ª epoca), 4: 4–23.

    Google Scholar 

  • Rab P, Reed K M, de León A P, Phillips R B. 1996. A new method for detecting nucleolus organizer regions in fish chromosomes using denaturation and propidium iodide staining. Biotech. Histochem., 71 (3): 157–162, https://doi.org/10.3109/10520299609117153.

    Article  Google Scholar 

  • Reggi R, Périco E, Suninsky M, Camillo J C A. 1986. Estudos citogenéticos em papa-terra, Menticirrhus litoralis (Perciformes, Serranidae). In: Simpósio de Citogenética Evolutiva e Aplicada de Peixes Neotropicais. Botucatu, UNESP. p.57.

    Google Scholar 

  • Ruiz-Herrera A, Nergadze S G, Santagostino M, Giulotto E. 2008. Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet. Genome Res., 122 (3–4): 219–228, https://dx.doi.org/10.1159/000167807.

    Article  Google Scholar 

  • Sasaki K. 1996. Sciaenid fishes of the Indian Ocean (Teleostei, Perciformes). Mem. Fac. Sci. Kochi. Univ. Ser. D, 16-17: 17–83.

    Google Scholar 

  • Sasaki K. 2001. Sciaenidae. Croakers (drums). In: Carpenter K E ed. FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Vol. 5. Bony Fishes Part 3 (Menidae to Pomacentridae). Rome: FAO. p.2 791–3 380.

    Google Scholar 

  • Scacchetti P C, Pansonato-Alves J C, Utsunomia R, Oliveira C, Foresti F. 2011. Karyotypic diversity in four species of the genus Gymnotus Linnaeus, 1758 (Teleostei, Gymnotiformes, Gymnotidae): physical mapping of ribosomal genes and telomeric sequences. Comp Cytogen., 5 (3): 223–235, https://doi.org/10.3897/CompCytogen.v5i3.1375.

    Article  Google Scholar 

  • She C W, Liu J Y, Diao Y, Hu Z L, Song Y C. 2007. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. J. Genet. Genom., 34 (5): 437–448, https://doi.org/10.1016/S1673-8527(07)60048-4.

    Article  Google Scholar 

  • Slijepcevic P. 1998. Telomeres and mechanisms of robertsonian fusion. Chromosoma, 107 (2): 136–140, https://doi.org/10.1007/s004120050289.

    Article  Google Scholar 

  • Sumner A T. 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res., 75 (1): 304–306, https://doi.org/10.1016/0014-4827(72)90558-7.

    Article  Google Scholar 

  • Symonová R, Majtánová Z, Sember A, Staaks G B, Bohlen J, Freyhof J, Rábová M, Ráb P. 2013. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol., 13 (1): 42, https://doi.org/10.1186/1471-2148-13-42.

    Article  Google Scholar 

  • Wang D X, Wang J, Guo F, Liang J R, Qin Y X. 2002. Study on the karyotype in Nibea miichtheoides. Marine Sci,. 26 (11): 68–70, https://doi.org/10.3969/j.issn.1000-3096.2002.11.019. (in Chinese with English abstract)

    Google Scholar 

  • Wang X Y. 2012. Chromosome karyotypic analyses of some cultured fishes of the East China Sea. Zhejiang Ocean Univ. Press, Zhejiang, China. p.1-65. (in Chinese).

    Google Scholar 

  • Zheng J, Cao K, Yang A R, Zhang J, Wang Z Y, Cai M Y. 2016. Chromosome mapping using genomic DNA and repetitive DNA sequences as probes for somatic chromosome identification in Nibea albiflora. J. Fish. China, 40 (8): 1 156–1 162, https://doi.org/10.11964/jfc.20151110166. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyi Cai  (蔡明夷).

Additional information

Supported by the National Natural Science Foundation of China (No. 31272653), the Natural Science Foundation of Fujian Province (No. 2017J01449), and the Foundation for Innovation Research Team of Jimei University (No. 2010A02)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, M., Zheng, J., Wang, Z. et al. Molecular cytogenetic of the Amoy croaker, Argyrosomus amoyensis (Teleostei, Sciaenidae). J. Ocean. Limnol. 36, 842–849 (2018). https://doi.org/10.1007/s00343-018-6272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-6272-0

Keyword

Navigation