Skip to main content
Log in

Affordable medium-finesse optical cavity for diode laser stabilization

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have constructed and characterized an affordable medium-finesse optical cavity \(({\mathcal {F}}\sim {1500})\) for the stabilization of tunable diode lasers at two different wavelengths (780, and \({960\,\textrm{nm}}\), respectively). Its main element is an ultra-low expansion glass spacer, whose temperature was stabilized using thermoelectric cooler elements inside a vacuum chamber. By combining the dual sideband technique and the classical Pound–Drever–Hall technique, we were able to lock the lasers at any frequency within the cavity free spectral range. The cavity presents a long-term drift of resonant frequency of \({1.2\,\mathrm{MHz/day}}\), which can be compensated for by temperature variation. Finally, we demonstrate the cavity use in an electromagnetically induced transparency microwave spectrum experiment in a thermal atomic sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The experimental data are available from the authors upon reasonable request.

References

  1. C.L. Mueller, M.A. Arain, G. Ciani, R.T. DeRosa, A. Effler, D. Feldbaum, V.V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E.J. King, K. Kokeyama, W.Z. Korth, R.M. Martin, A. Mullavey, J. Peold, V. Quetschke, D.H. Reitze, D.B. Tanner, C. Vorvick, L.F. Williams, G. Mueller, The advanced LIGO input optics. Rev. Sci. Instrum. 87(1), 014502 (2016). https://doi.org/10.1063/1.4936974

    Article  ADS  Google Scholar 

  2. T. Bothwell, C.J. Kennedy, A. Aeppli, D. Kedar, J.M. Robinson, E. Oelker, A. Staron, J. Ye, Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022). https://doi.org/10.1038/s41586-021-04349-7

    Article  ADS  Google Scholar 

  3. X. Zheng, J. Dolde, V. Lochab, B.N. Merriman, H. Li, S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock. Nature 602, 425–430 (2022). https://doi.org/10.1038/s41586-021-04344-y

    Article  ADS  Google Scholar 

  4. M.W. Hamilton, An introduction to stabilized lasers. Contemp. Phys. 30, 21–33 (1989). https://doi.org/10.1080/00107518908222588

    Article  ADS  Google Scholar 

  5. A. Javan, W.R. Bennett, D.R. Herriott, Population inversion and continuous optical maser oscillation in a gas discharge containing a he-ne mixture. Phys. Rev. Lett. 6, 106–110 (1961). https://doi.org/10.1103/PhysRevLett.6.106

    Article  ADS  Google Scholar 

  6. J.L. Hall, Frequency-stabilized Lasers: A Parochial Review. Frequency-Stabilized Lasers and Their Applications, vol. 1837 (SPIE, 1993), p. 2. https://doi.org/10.1117/12.143668

  7. P.H. Lee, M.L. Skolnick, Saturated neon absorption inside a 6238-Å laser. ApPhL 10, 303–305 (1967). https://doi.org/10.1063/1.1754821

    Article  ADS  Google Scholar 

  8. C. Wieman, T.W. Hänsch, Doppler-free laser polarization spectroscopy. Phys. Rev. Lett. 36, 1170 (1976). https://doi.org/10.1103/PhysRevLett.36.1170

    Article  ADS  Google Scholar 

  9. M.L. Eickhoff, J.L. Hall, Optical frequency standard at 532 nm. IEEE Trans. Instrum. Meas. 44, 155–158 (1995). https://doi.org/10.1109/19.377797

    Article  ADS  Google Scholar 

  10. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983). https://doi.org/10.1007/BF00702605/METRICS

    Article  ADS  Google Scholar 

  11. J. Hond, N. Cisternas, G. Lochead, N.J. Druten, Medium-finesse optical cavity for the stabilization of rydberg lasers. Appl. Opt. 56, 5436 (2017). https://doi.org/10.1364/AO.56.005436

    Article  ADS  Google Scholar 

  12. J.A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, J.P. Shaffer, Microwave electrometry with rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 8(11), 819–824 (2012). https://doi.org/10.1038/nphys2423

    Article  Google Scholar 

  13. R. Finkelstein, S. Bali, O. Firstenberg, I. Novikova, A practical guide to electromagnetically induced transparency in atomic vapor. New J. Phys. 25(3), 035001 (2023). https://doi.org/10.1088/1367-2630/acbc40

    Article  ADS  Google Scholar 

  14. Ule ® corning code 7972 ultra low expansion glass advanced optics and materials ule ® corning code 7972 ultra low (2006). http://www.corning.com/media/worldwide/csm/documents/D20FD2EA-7264-43DD-B544-E1CA042B486A.pdf

  15. C.E. Powers, Outgassing Data for Selected Spacecraft Materials (NASA, 2014). http://outgassing.nasa.gov/

  16. J.I. Thorpe, K. Numata, J. Livas, Laser frequency stabilization and control through offset sideband locking to optical cavities. Opt. Express 16(20), 15980–15990 (2008). https://doi.org/10.1364/OE.16.015980

    Article  ADS  Google Scholar 

  17. E.D. Black, An introduction to Pound-Drever–Hall laser frequency stabilization. Am. J. Phys. 69(1), 79–87 (2001). https://doi.org/10.1119/1.1286663

    Article  ADS  Google Scholar 

  18. H. Kogelnik, T. Li, Laser beams and resonators. Appl. Opt. 5, 1550 (1966). https://doi.org/10.1364/ao.5.001550

    Article  ADS  Google Scholar 

  19. M.D. Álvarez, Optical cavities for optical atomic clocks, atom interferometry and gravitational-wave detection. Springer, Cham, pp. 1–245. https://doi.org/10.1007/978-3-030-20863-9

  20. J. Zhang, Y.X. Luo, B. Ouyang, K. Deng, Z.H. Lu, J. Luo, Design of an optical reference cavity with low thermal noise and flexible thermal expansion properties. Eur. Phys. J. D 67, 825 (2012). https://doi.org/10.1140/epjd/e2013-30458-2

    Article  Google Scholar 

  21. T. Legero, U. Sterr, T. Kessler, Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors. JOSA B 27(5), 914–919 (2010). https://doi.org/10.1364/JOSAB.27.000914

    Article  ADS  Google Scholar 

  22. C. Qiao, C.Z. Tan, F.C. Hu, L. Couturier, I. Nosske, P. Chen, Y.H. Jiang, B. Zhu, M. Weidemüller, An ultrastable laser system at 689 nm for cooling and trapping of strontium. Appl. Phys. B Lasers Opt. 125, 215 (2019). https://doi.org/10.1007/s00340-019-7328-3

    Article  ADS  Google Scholar 

  23. I. Ito, A. Silva, T. Nakamura, Y. Kobayashi, Stable CW laser based on low thermal expansion ceramic cavity with 49 mhz/s frequency drift. Opt. Express 25, 26020 (2017). https://doi.org/10.1364/oe.25.026020

    Article  ADS  Google Scholar 

  24. J.M. Kondo, N. Šibalić, A. Guttridge, C.G. Wade, N.R.D. Melo, C.S. Adams, K.J. Weatherill, Observation of interference effects via four-photon excitation of highly excited rydberg states in thermal cesium vapor. Opt. Lett. 40(23), 5570–5573 (2015). https://doi.org/10.1364/OL.40.005570

    Article  ADS  Google Scholar 

  25. X. Liu, F. Jia, H. Zhang, J. Mei, Y. Yu, W. Liang, J. Zhang, F. Xie, Z. Zhong, Using amplitude modulation of the microwave field to improve the sensitivity of rydberg-atom based microwave electrometry. AIP Adv. 11(8), 085127 (2021). https://doi.org/10.1063/5.0054027/967158

    Article  ADS  Google Scholar 

  26. D. McGloin, D.J. Fulton, M.H. Dunn, Electromagnetically induced transparency in n-level cascade schemes. Opt. Commun. 190(1), 221–229 (2001). https://doi.org/10.1016/S0030-4018(01)01053-7

    Article  ADS  Google Scholar 

  27. E.J. Robertson, N. Šibalić, R.M. Potvliege, M.P.A. Jones, Arc 3.0: an expanded python toolbox for atomic physics calculations. Comput. Phys. Commun. 261, 107814 (2021). https://doi.org/10.1016/j.cpc.2020.107814

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by grants 2018/06835-0, 2019/23510-0, 2019/10971-0, 2021/04107-0, 2021/06371-7 and 2022/16904-5, São Paulo Research Foundation (FAPESP) and CNPq (305257/2022-6). It is also supported by the US Air Force Office of Scientific Research (Grant FA9550-20-1-0031) and the Army Research Office (Grant W911NF-21-1-0211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rodríguez Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, D.R., Torres, M.A.L., Cardoso, M.R. et al. Affordable medium-finesse optical cavity for diode laser stabilization. Appl. Phys. B 130, 60 (2024). https://doi.org/10.1007/s00340-024-08190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08190-4

Navigation