Skip to main content
Log in

Laser ablation in water for silver and gold nanoparticle synthesis and their application for improvement of TEA CO2 LIBS setup performance

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Pulsed laser ablation in liquids (PLAL) is an approach for the direct synthesis of nanoparticles from the bulk material. In the present work, silver and gold nanoparticles (NPs) were synthesized using the PLAL technique, and obtained water colloid suspensions were characterized by TEM–EDX, ICP-OES, UV–VIS, and DLS methods. On the other hand, Laser-Induced Breakdown Spectroscopy (LIBS) is a well-recognized and versatile analytical technique for the element analysis of solid samples. However, obtaining improved spectral intensity and detection sensitivity are still great challenging tasks, especially for an alternative and cost-effective LIBS setup based on TEA CO2 laser. Considering these demands, this work aimed to investigate a promising approach to signal enhancement based on the deposition of noble NPs on the plastic sample. The effect of NPS on the enhancement of the LIBS signal has been investigated. LIBS experiments were carried out in air at atmospheric pressure and obtained spectra with a high signal-to-background (SBR) ratio. This study shows that signal enhancement can be achieved followed by the lower limits of detection by increasing the ablation amount rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Turner, M. Filella, Environ. Int. 156, 106622 (2021)

    Article  Google Scholar 

  2. R.-K. Matti, V. Pasi, K. Jukka, S. Antti, R. Milena, Ash forming elements in plastics and rubbers (Publisher VTT Technical Research Centre of Finland, Espoo, 2014) pp. 131

    Google Scholar 

  3. Y. Wang, H. Su, Y. Gu, X. Song, J. Zhao, Onco. Targets. Ther. 10, 4065 (2017)

    Article  Google Scholar 

  4. A.L. Wani, A. Ara, J.A. Usmani, Interdiscip. Toxicol. 8, 55 (2015)

    Article  Google Scholar 

  5. K. Liu, D. Tian, C. Li, Y. Li, G. Yang, Y. Ding, TrAC. Trends Anal. Chem. 110, 327 (2019)

    Article  Google Scholar 

  6. D.W. Hahn, N. Omenetto, Appl. Spectrosc. 66, 347 (2012)

    Article  ADS  Google Scholar 

  7. L. Jolivet, M. Leprince, S. Moncayo, L. Sorbier, C.-P. Lienemann, V. Motto-Ros, Spectrochim. Acta Part B At. Spectrosc. 151, 41 (2019)

    Article  ADS  Google Scholar 

  8. A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, O. De Pascale, Spectrochim. Acta Part B At. Spectrosc. 98, 19 (2014)

    Article  ADS  Google Scholar 

  9. M. Dell’Aglio, R. Alrifai, A. De Giacomo, Spectrochim. Acta Part B At. Spectrosc. 148, 105 (2018)

    Article  ADS  Google Scholar 

  10. M. Abdelhamid, Y.A. Attia, M. Abdel-Harith, J. Anal. At. Spectrom. 35, 2982 (2020)

    Article  Google Scholar 

  11. V.V. Kiris, A.V. Butsen, E.A. Ershov-Pavlov, M.I. Nedelko, A.A. Nevar, Int. J. Nanosci. 18, 1940022 (2019)

    Article  Google Scholar 

  12. D.J. Palásti, P. Albrycht, P. Janovszky, K. Paszkowska, Z. Geretovszky, G. Galbács, Spectrochim. Acta Part B At. Spectrosc. 166, 105793 (2020)

    Article  Google Scholar 

  13. Z. Salajková, V. Gardette, J. Kaiser, M. Dell’Aglio, A. De Giacomo, Spectrochim. Acta Part B At. Spectrosc. 179, 106105 (2021)

    Article  Google Scholar 

  14. X. Liu, Q. Lin, Y. Tian, W. Liao, T. Yang, C. Qian, T. Zhang, Y. Duan, J. Anal. At. Spectrom. 35, 188 (2020)

    Article  Google Scholar 

  15. M. Dell’Aglio, C. Di Franco, A. De Giacomo, J. Anal. At. Spectrom. (2023). https://doi.org/10.1039/D2JA00324D. https://pubs.rsc.org/en/content/articlelanding/2023/JA/D2JA00324D

    Article  Google Scholar 

  16. V. Kiris, J. Savovic, A. Nevar, M. Kuzmanovic, M. Nedelko, D. Rankovic, N. Tarasenko, Spectrochim. Acta Part B At. Spectrosc. 187, 106333 (2022)

    Article  Google Scholar 

  17. G.K. Yogesh, S. Shukla, D. Sastikumar, P. Koinkar, Appl. Phys. A 127, 810 (2021)

    Article  ADS  Google Scholar 

  18. N. Krstulović, K. Salamon, O. Budimlija, J. Kovač, J. Dasović, P. Umek, I. Capan, Appl. Surf. Sci. 440, 916 (2018)

    Article  ADS  Google Scholar 

  19. Y. Jing, R. Wang, Q. Wang, Z. Xiang, Z. Li, H. Gu, X. Wang, Adv. Compos. Hybrid Mater. 4, 885 (2021)

    Article  Google Scholar 

  20. D. Blažeka, R. Radičić, D. Maletić, S. Živković, M. Momčilović, N. Krstulović, Nanomaterials 12, 2677 (2022)

    Article  Google Scholar 

  21. M. Momcilovic, M. Kuzmanovic, D. Rankovic, J. Ciganovic, M. Stoiljkovic, J. Savovic, M. Trtica, Appl. Spectrosc. 69, 419 (2015)

    Article  ADS  Google Scholar 

  22. J. Savovic, M. Stoiljkovic, M. Kuzmanovic, M. Momcilovic, J. Ciganovic, D. Rankovic, S. Zivkovic, M. Trtica, Spectrochim. Acta Part B At. Spectrosc. 118, 127 (2016)

    Article  ADS  Google Scholar 

  23. J.J. Savović, S.M. Živković, M. Momčilović, M. Trtica, M. Stoiljković, M. Kuzmanović, J. Serbian Chem. Soc. 82, 1135 (2017)

    Article  Google Scholar 

  24. S. Zivkovic, J. Savovic, M. Trtica, J. Mutic, M. Momcilovic, J. Alloys Compd. 700, 175 (2017)

    Article  Google Scholar 

  25. S. Zivkovic, M. Momcilovic, A. Staicu, J. Mutic, M. Trtica, J. Savovic, Spectrochim. Acta Part B At. Spectrosc. 128, 22 (2017)

    Article  ADS  Google Scholar 

  26. S. Zivkovic, J. Savovic, M. Kuzmanovic, J. Petrovic, M. Momcilovic, Microchem. J. 137, 410 (2018)

    Article  Google Scholar 

  27. M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P.J. Dagdigian, M. Richardson, Opt. Express 18, 259 (2010)

    Article  ADS  Google Scholar 

  28. J. Car, D. Blažeka, T. Bajan, L. Krce, I. Aviani, N. Krstulović, Appl. Phys. A 127, 838 (2021)

    Article  ADS  Google Scholar 

  29. M.A. Majeed Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. AlSalhi, Nanoscale Res. Lett. 6, 434 (2011)

    Article  ADS  Google Scholar 

  30. L. Wang, W. Zhang, D. Sheng Su, X. Meng, F.-S. Xiao, Chem. Commun. 48, 5476 (2012)

    Article  Google Scholar 

  31. L.W. McKeen, in Permeability Prop. Plast., Elastomers (William Andrew, Norwich, NY, 2017), pp. 21–40

  32. B.T. Fisher, H.A. Johnsen, S.G. Buckley, D.W. Hahn, Appl. Spectrosc. 55, 1312 (2001)

    Article  ADS  Google Scholar 

  33. J.M. Bennett, E.J. Ashley, Appl. Opt. 4, 221 (1965)

    Article  ADS  Google Scholar 

  34. Y.V. Martynenko, L.I. Ognev, Tech. Phys. 50, 1522 (2005)

    Article  Google Scholar 

  35. J. Liu, Z. Hou, T. Li, Y. Fu, Z. Wang, J. Anal. At. Spectrom. 35, 2274 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the Ministry of Science, Technological Development, and Innovation of the Republic of Serbia for the financial support to the research through institutional funding (Contract number 451-03-47/2023-01/200017); bilateral project between Serbia and Croatia (337-00-205/2019-09/15); Croatian Science Foundation under project HrZZ-IP-2019-04-6418)

Funding

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MM and SŽ; methodology, SŽ; formal analysis, JP, MN, JC; investigation, NK, MO; data curation, SŽ; writing—original draft preparation, MM; writing—review and editing, SŽ; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sanja Živković.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momčilović, M., Petrović, J., Nemoda, M. et al. Laser ablation in water for silver and gold nanoparticle synthesis and their application for improvement of TEA CO2 LIBS setup performance. Appl. Phys. B 129, 62 (2023). https://doi.org/10.1007/s00340-023-08007-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08007-w

Navigation