Skip to main content
Log in

Single sideband modulation formats for quantum atom interferometry with Rb atoms

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Quantum atom interferometry is a promising tool for various high-precision sensing experiments. The requirement for robust and stable quantum atom interferometry leads to the development of compact laser systems to generate magneto-optic traps and perform atom interferometry. Due to its excellent properties, 87Rb atoms are used for quantum atom interferometry. The 87Rb transition wavelength (780 nm) is half of the telecommunication wavelength (1560 nm), which offers several technological advantages. With a telecom laser source, different electro-optic modulation formats can be used to generate the required frequencies for laser cooling and atom interferometry. Most of the work in this field is based on a dual-parallel Mach–Zehnder modulator, which requires multiple DC sources for precise biasing, making it prone to bias drift. In this paper, the performance of different electro-optic modulators, such as intensity modulator, phase modulator, dual-drive Mach–Zehnder modulator, and dual-parallel Mach–Zehnder modulator, is experimentally investigated for 87Rb atom interferometry with a frequency doubling architecture achieved with a nonlinear crystal. Experiments with corresponding simulations confirm that a phase modulator has the potential to replace the dual-parallel Mach–Zehnder modulator with low power consumption, more compactness, and more stable operation, resulting in ease of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Available from authors upon reasonable request.

References

  1. K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon, E. Rasel, C. Schubert, W.P. Schleich, A. Roura, Nat. Rev. Phys. 1, 731–739 (2019)

    Google Scholar 

  2. F.A. Narducci, A.T. Black, J.H. Burke, Adv. Phys. 7(1), 1946426 (2022)

    Google Scholar 

  3. B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C.L.G. Alzar, R. Geiger, S. Merlet, F.P.D. Santos, A. Landragin, J. Phys. Conf. Ser. 723, 012049 (2016)

    Google Scholar 

  4. Y. Wang, S. Chai, T. Billotte, Z. Chen, M. Xin, W.S. Leong, F. Amrani, B. Debord, F. Benabid, S.-Y. Lan, Phys. Rev. Res. 4, L022058 (2022)

    Google Scholar 

  5. P. R. Berman, Atom interferometry, 1st edition, Academic Press (1997).

  6. M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181–184 (1991)

    ADS  Google Scholar 

  7. R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, P. Bouyer, Nat. Commun. 2, 474 (2011)

    ADS  Google Scholar 

  8. B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, P. Bouyer, Quantum Opt. 9900, 21–37 (2016)

    Google Scholar 

  9. S.M. Dickerson, J.M. Hogan, A. Sugarbaker, D.M.S. Johnson, M.A. Kasevich, Phys. Rev. Lett. 111, 083001 (2013)

    ADS  Google Scholar 

  10. A. Peters, K.Y. Chung, S. Chu, Metrologia 38, 25–61 (2001)

    ADS  Google Scholar 

  11. C. Janvier, V. Ménoret, B. Desruelle, S. Merlet, A. Landragin, F. Pereira dos Santos, Phys. Rev. A 105, 022801 (2022)

    ADS  Google Scholar 

  12. H. Müller, S.-W. Chiow, Q. Long, C. Vo, S. Chu, Appl. Phys. B 84, 633–642 (2006)

    ADS  Google Scholar 

  13. G.M. Tino, Quantum. Sci. Technol. 6(2), 024014 (2021)

    Google Scholar 

  14. M. Fattori, G. Lamporesi, T. Petelski, J. Stuhler, G.M. Tino, Phys. Lett. A 318, 184–191 (2003)

    ADS  Google Scholar 

  15. G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, G.M. Tino, Phys. Rev. Lett. 100, 050801 (2008)

    ADS  Google Scholar 

  16. P. Cladé, R. Bouchendira, S. Guellati, S. Guellati, F. Nez, and F. Biraben, Proceedings of the International Quantum Electronics Conference, p. I91, Optica (2011).

  17. D. Schlippert, J. Hartwig, H. Albers, L.L. Richardson, C. Schubert, A. Roura, W.P. Schleich, W. Ertmer, E.M. Rasel, Phys. Rev. Lett. 112, 203002 (2014)

    ADS  Google Scholar 

  18. G.M. Tino, L. Cacciapuoti, S. Capozziello, G. Lambiase, F. Sorrentino, Prog. Part. Nucl. Phys. 112, 103772 (2020)

    Google Scholar 

  19. B. Rohwedder, M. França Santos, Phys. Rev. A 61, 023601 (2000)

    ADS  Google Scholar 

  20. A. Lenef, T.D. Hammond, E.T. Smith, M.S. Chapman, R.A. Rubenstein, D.E. Pritchard, Phys. Rev. Lett. 78, 760–763 (1997)

    ADS  Google Scholar 

  21. B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, Ch.J. Bordé, A. Landragin, P. Bouyer, Phys. Rev. Lett. 97, 010402 (2006)

    ADS  Google Scholar 

  22. M. Warner, J. Grosse, L. Wörner, L. Kumanchik, D. Knoop, J. Schröder, J. Halbey, R. Riesner, and C. Braxmaier, 2019 DGON Inert. Sens. Syst. (ISS), IEEE, 1–14 (2019).

  23. K. Batsukh, Civil and environmental engineering for the sustainable development goal (Springer, Cham, 2022), pp.43–54

    Google Scholar 

  24. L. Badurina, O. Buchmueller, J. Ellis, M. Lewicki, C. McCabe, V. Vaskonen, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 380, 20210060 (2022)

    ADS  Google Scholar 

  25. M. Plumaris, D. Dirkx, C. Siemes, O. Carraz, Remote Sens. 14, 3030 (2022)

    ADS  Google Scholar 

  26. A. Bertoldi, P. Bouyer, B. Canuel, Handb. Gravitational Wave Astron., 1–14 (2020)

  27. B. Stray, A. Lamb, A. Kaushik, J. Vovrosh, A. Rodgers, J. Winch, F. Hayati, D. Boddice, A. Stabrawa, A. Niggebaum, M. Langlois, Y.-H. Lien, S. Lellouch, S. Roshanmanesh, K. Ridley, G. de Villiers, G. Brown, T. Cross, G. Tuckwell, A. Faramarzi, N. Metje, K. Bongs, M. Holynski, Nature 602, 590–594 (2022)

    ADS  Google Scholar 

  28. G. Stern, B. Battelier, R. Geiger, G. Varoquaux, A. Villing, F. Moron, O. Carraz, N. Zahzam, Y. Bidel, W. Chaibi, F. Pereira Dos Santos, A. Bresson, A. Landragin, P. Bouyer, Eur. Phys. J. D 53, 353–357 (2009)

    ADS  Google Scholar 

  29. A. Hinton, M. Perea-Ortiz, J. Winch, J. Briggs, S. Freer, D. Moustoukas, S. Powell-Gill, C. Squire, A. Lamb, C. Rammeloo, B. Stray, G. Voulazeris, L. Zhu, A. Kaushik, Y.-H. Lien, A. Niggebaum, A. Rodgers, A. Stabrawa, D. Boddice, S.R. Plant, G.W. Tuckwell, K. Bongs, N. Metje, M. Holynski, Philos. Transact. A Math. Phys. Eng. Sci. 375, 20160238 (2017)

    Google Scholar 

  30. S.S. Sané, S. Bennetts, J.E. Debs, C.C.N. Kuhn, G.D. McDonald, P.A. Altin, J.D. Close, N.P. Robins, Opt. Express 20, 8915–8919 (2012)

    ADS  Google Scholar 

  31. T. Lahaye, Z. Wang, G. Reinaudi, S.P. Rath, J. Dalibard, D. Guéry-Odelin, Phys. Rev. A 72, 033411 (2005)

    ADS  Google Scholar 

  32. Z. Zhu, H. Liao, H. Tu, X. Duan, Y. Zhao, Aerospace 9, 253 (2022)

    Google Scholar 

  33. S. Chiow, N. Yu, Appl. Phys. B 124, 96 (2018)

    ADS  Google Scholar 

  34. S. Merlet, L. Volodimer, M. Lours, F. Pereira Dos Santos, Appl. Phys. B 117, 749–754 (2014)

    ADS  Google Scholar 

  35. J. I. Malcolm, Diss. University of Birminghum (2016)

  36. P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K.T. Therkildsen, A. Clairon, A. Landragin, Appl. Phys. B 84, 643–646 (2006)

    ADS  Google Scholar 

  37. Q. Luo, H. Zhang, K. Zhang, X.-C. Duan, Z.-K. Hu, L.-L. Chen, M.-K. Zhou, Rev. Sci. Instrum. 90, 043104 (2019)

    ADS  Google Scholar 

  38. S. Templier, J. Hauden, P. Cheiney, F. Napolitano, H. Porte, P. Bouyer, B. Barrett, B. Battelier, Phys. Rev. Appl. 16, 044018 (2021)

    ADS  Google Scholar 

  39. O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, A. Bresson, Appl. Phys. B 97, 405 (2009)

    ADS  Google Scholar 

  40. C. Rammeloo, L. Zhu, Y.-H. Lien, K. Bongs, M. Holynski, JOSA B 37, 1485–1493 (2020)

    ADS  Google Scholar 

  41. L. Zhu, Diss. University of Birmingham (2018)

  42. L. Zhu, Y.-H. Lien, A. Hinton, A. Niggebaum, C. Rammeloo, K. Bongs, M. Holynski, Opt. Express 26, 6542–6553 (2018)

    ADS  Google Scholar 

  43. X. Wu, F. Zi, J. Dudley, R.J. Bilotta, P. Canoza, H. Müller, Optica 4, 1545–1551 (2017)

    ADS  Google Scholar 

  44. W. Li, X. Pan, N. Song, X. Xu, X. Lu, Appl. Phys. B 123, 54 (2017)

    ADS  Google Scholar 

  45. J. Dingjan, B. Darquie, J. Beugnon, M.P.A. Jones, S. Bergamini, G. Messin, A. Browaeys, P. Grangier, Appl. Phys. B 82, 47–51 (2006)

    ADS  Google Scholar 

  46. S.W. Chiow, T. Kovachy, J.M. Hogan, M.A. Kasevich, Opt. Lett. 37(18), 3861–3863 (2012)

    ADS  Google Scholar 

  47. C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, A. Bresson, Opt. Exp. 25, 16898 (2017)

    Google Scholar 

  48. M. Kim, R. Notermans, C. Overstreet, J. Curti, P. Asenbaum, M.A. Kasevich, Opt. Lett. 45(23), 6555–6558 (2020)

    ADS  Google Scholar 

  49. S. Sarkar, R. Piccon, S. Merlet, F.P.D. Santos, Opt. Lett. 30(31), 3358–3366 (2022)

    Google Scholar 

  50. B.N. Jiang, App. Phys. B 128, 71 (2022)

    ADS  Google Scholar 

  51. V. J. Urick , K. J. Williams, J. D. McKinney, Fundamentals of microwave photonics, John Wiley & Sons, (2015)

  52. A. Choudhary, Y. Liu, D. Marpaung, B.J. Eggleton, IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018)

    Google Scholar 

  53. T. Kawanishi, IEEE JQE 13(1), 79 (2007)

    Google Scholar 

  54. C. V. Rammeloo, Diss. University of Birmingham (2018)

  55. A. Choudhary, Y. Liu, B. Morrison, K. Vu, D.-Y. Choi, P. Ma, S. Madden, D. Marpaung, B.J. Eggleton, Sci. Rep. 7, 5932 (2017)

    ADS  Google Scholar 

  56. C.D. Macrae, K. Bongs, M. Holynski, Opt. Lett. 46(6), 1257–1260 (2021)

    ADS  Google Scholar 

Download references

Funding

This work is funded by the Principal Scientific Advisor’s office of the Government of India Prn.SA/Grav/2020(G).

Author information

Authors and Affiliations

Authors

Contributions

HJP, AT and HV performed the experiments. HJP performed the simulations. RD supported derivations and the development of the theoretical model. AC conceived the idea and supervised the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Amol Choudhary.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, H.J., Tyagi, A., Vaid, H. et al. Single sideband modulation formats for quantum atom interferometry with Rb atoms. Appl. Phys. B 129, 24 (2023). https://doi.org/10.1007/s00340-022-07961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07961-1

Navigation