Skip to main content
Log in

Transmission characteristics of a cylindrically-symmetric core-cladding mode coupler in the terahertz regime

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

With the rapid development of optoelectronic fibers of multi-materials and structures, coupling between the optoelectronic fibers and the conventional optical fibers with high transmission is desirable. In this article, we propose a mode coupler to facilitate the transmission of electromagnetic wave from a dielectric fiber to a simple metal-core optoelectronic fiber in the terahertz regime. The coupler mainly consists of an air cone along its symmetric axis. The transmission characteristics of the terahertz wave of the frequency ranging from 2 to 8 THz for five hybrid modes are investigated using finite difference time domain method. We show the dependence of the transmission on the height of the air cone for the selected frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Tonouchi, Nat. Photon. 1(2), 97 (2007)

    Article  ADS  Google Scholar 

  2. D. Saeedkia, Handbook of Terahertz Technology for Imaging, Sensing and Communicaitons (Woodhead Publishing Limited, Philadelphia, 2013)

    Book  Google Scholar 

  3. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, New York, 1996)

    Book  Google Scholar 

  4. A. Kazemipour, M. Wollensack, J. Hoffmann, M. Hudlička, S.K. Yee, J. Rüfenacht, D. Stalder, G. Gäumann, M. Zeier, J. Infrared Millim. Terahertz Waves 41, 1199–1217 (2020)

    Article  Google Scholar 

  5. G. Zhao, R.N. Schouten, N. van der Valk, W.T. Wenckebach, P.C.M. Planken, Rev. Sci. Instrum. 73(4), 1715 (2002)

    Article  ADS  Google Scholar 

  6. G.M. Katyba, K.I. Zaytsev, N.V. Chernomyrdin, I.A. Shikunova, G.A. Komandin, V.B. Anzin, S.P. Lebedev, I.E. Spektor, V.E. Karasik, S.O. Yurchenko, I.V. Reshetov, V.N. Kurlov, M. Skorobogatiy, Adv. Opt. Mater. 6(22), 1800573 (2018)

    Article  Google Scholar 

  7. Z.D. Taylor, R.S. Singh, D.B. Bennett, P. Tewari, C.P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E.R. Brown, W.S. Grundfest, IEEE Trans. Terahertz Sci. Technol. 1(1), 201 (2011)

    Article  ADS  Google Scholar 

  8. G. Liu, C. Chang, Z. Qiao, K. Wu, Z. Zhu, G. Cui, W. Peng, Y. Tang, J. Li, C. Fan, Adv. Funct. Mater. 29(7), 1807862 (2019)

    Article  Google Scholar 

  9. Z. Xiang, C. Tang, C. Chang, G. Liu, Sci. Bull. 65(4), 308 (2020)

    Article  Google Scholar 

  10. K. Ahi, S. Shahbazmohamadi, N. Asadizanjani, Opt. Lasers Eng. 104, 274 (2018)

    Article  Google Scholar 

  11. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, Nat. Photon. 7(12), 977 (2013)

    Article  ADS  Google Scholar 

  12. S. Ummethala, T. Harter, K. Koehnle, Z. Li, S. Muehlbrandt, Y. Kutuvantavida, J. Kemal, P. Marin-Palomo, J. Schaefer, A. Tessmann, S.K. Garlapati, A. Bacher, L. Hahn, M. Walther, T. Zwick, S. Randel, W. Freude, C. Koos, Nat. Photon. 13(8), 519 (2019)

    Article  Google Scholar 

  13. J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, Semicond. Sci. Technol. 20(7), S266 (2005)

    Article  ADS  Google Scholar 

  14. M.S. Islam, C.M.B. Cordeiro, M.A.R. Franco, J. Sultana, A.L.S. Cruz, D. Abbott, Opt. Express 28(11), 16089 (2020)

    Article  ADS  Google Scholar 

  15. S.R. Andrews, J. Phys. D 47(37), 374004 (2014)

    Article  Google Scholar 

  16. M.Y. Frankel, S. Gupta, J.A. Valdmanis, G.A. Mourou, IEEE Trans. Microw. Theory Tech. 39(6), 910 (1991)

    Article  ADS  Google Scholar 

  17. G. Gallot, S.P. Jamison, R.W. McGowan, D. Grischkowsky, J. Opt. Soc. Am. B 17(5), 851 (2000)

    Article  ADS  Google Scholar 

  18. A. Bingham, Y. Zhao, D. Grischkowsky, Appl. Phys. Lett. 87(5), 051101 (2005)

    Article  ADS  Google Scholar 

  19. K. Wang, D.M. Mittleman, Nature 432(7015), 376 (2004)

    Article  ADS  Google Scholar 

  20. J.A. Harrington, R. George, P. Pedersen, E. Mueller, Opt. Express 12(21), 5263 (2004)

    Article  ADS  Google Scholar 

  21. S. Atakaramians, T.M. Monro, D. Abbott, Adv. Opt. Photon. 5(2), 169 (2013)

    Article  Google Scholar 

  22. R. Mendis, D. Grischkowsky, J. Appl. Phys. 88(7), 4449 (2000)

    Article  ADS  Google Scholar 

  23. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, S. Ichikawa, J. Lightw. Technol. 23(8), 2469 (2005)

    Article  ADS  Google Scholar 

  24. M. Skorobogatiy, A. Dupuis, Appl. Phys. Lett. 90(11), 113514 (2007)

    Article  ADS  Google Scholar 

  25. M. Goto, A. Quema, H. Takahashi, S. Ono, N. Sarukura, Jpn. J. Appl. Phys. 43(2B), L317 (2004)

    Article  ADS  Google Scholar 

  26. K.I. Zaytsev, G.M. Katyba, N.V. Chernomyrdin, I.N. Dolganova, A.S. Kucheryavenko, A.N. Rossolenko, V.V. Tuchin, V.N. Kurlov, M. Skorobogatiy, Adv. Opt. Mater. 8(15), 2000307 (2020)

    Article  Google Scholar 

  27. Y.S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009)

    Google Scholar 

  28. R. Krska, R. Kellner, U. Schiessl, M. Tacke, A. Katzir, Appl. Phys. Lett. 63(14), 1868 (1993)

    Article  ADS  Google Scholar 

  29. Z. Li, J.S. Okasinski, D.J. Gosztola, Y. Ren, Y. Sun, J. Mater. Chem. C 3, 58 (2015)

    Article  Google Scholar 

  30. S. Basov, Y. Dankner, M. Weinstein, A. Katzir, M. Platkov, Med. Phys. 47(11), 5523 (2020)

    Article  Google Scholar 

  31. H. Chen, C. Chiu, C. Lai, J. Kuo, P. Chiang, Y. Hwang, H. Chang, C. Sun, J. Lightw. Technol. 27(11), 1489 (2009)

    Article  ADS  Google Scholar 

  32. J.T. Lu, C.H. Lai, T.F. Tseng, H. Chen, Y.F. Tsai, Y.J. Hwang, H.C. Chang, C.K. Sun, Opt. Express 19(27), 26883 (2011)

    Article  ADS  Google Scholar 

  33. T. Tseng, C. Lai, J. Lu, Y. Tsai, Y. Hwang, C. Sun, IEEE Photon. J. 4(6), 2307 (2012)

    Article  ADS  Google Scholar 

  34. H. Bao, K. Nielsen, H.K. Rasmussen, P.U. Jepsen, O. Bang, Opt. Express 22(8), 9486 (2014)

    Article  ADS  Google Scholar 

  35. Z. He, Y. Zhu, J. Kaňka, H. Du, Opt. Express 18(2), 507 (2010)

    Article  ADS  Google Scholar 

  36. Y. Liu, Y. Mi, B. Zhu, H. Li, W. Jian, G. Ren, S. Jian, Opt. Commun. 393, 238 (2017)

    Article  ADS  Google Scholar 

  37. M. Bayindir, F. Sorin, A.F. Abouraddy, J. Viens, S.D. Hart, J.D. Joannopoulos, Y. Fink, Nature 431(7010), 826 (2004)

    Article  ADS  Google Scholar 

  38. S. Tabassum, R. Kumar, Adv. Mater. Technol. 5(5), 1900792 (2020)

    Article  Google Scholar 

  39. W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, F. Sorin, Adv. Mater. 31(1), 1802348 (2019)

    Article  Google Scholar 

  40. J. Shi, F. Han, C. Cui, Y. Yu, X. Feng, Opt. Commun. 459, 125093 (2020)

    Article  Google Scholar 

  41. S. Park, G. Loke, Y. Fink, P. Anikeeva, Chem. Soc. Rev. 48, 1826 (2019)

    Article  Google Scholar 

  42. Z. Yu, O. Tarasenko, W. Margulis, P.Y. Fonjallaz, Opt. Express 16(11), 8229 (2008)

    Article  ADS  Google Scholar 

  43. R. Bloch, W. Luthy, T. Feurer, J. Lightw. Technol. 27(11), 1454 (2009)

    Article  ADS  Google Scholar 

  44. B. Sun, A. Wang, C. Gu, L. Xu, H. Ming, J. Lightw. Technol. 33(1), 3 (2015)

    Article  ADS  Google Scholar 

  45. A.S. Korsakov, D.S. Vrublevsky, A.E. Lvov, L.V. Zhukova, Opt. Mater. 64, 40 (2017)

    Article  ADS  Google Scholar 

  46. L.V. Zhukova, D.D. Salimgareev, A.E. Lvov, A.A. Yuzhakova, A.S. Korsakov, D.A. Belousov, K.V. Lipustin, V.M. Kondrashin, Chin. Opt. Lett. 19(11), 021602 (2021)

    Article  ADS  Google Scholar 

  47. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, IEEE J. Sel. Top. Quant. Electron. 6(1), 150 (2000)

    Article  ADS  Google Scholar 

  48. M. Loncar, T. Doll, J. Vuckovic, A. Scherer, J. Lightw. Technol. 18(10), 1402 (2000)

    Article  ADS  Google Scholar 

  49. Z. Zhu, T.G. Brown, Opt. Express 10(17), 853 (2002)

    Article  ADS  Google Scholar 

  50. P. Cheben, D.X. Xu, S. Janz, A. Densmore, Opt. Express 14(11), 4695 (2006)

    Article  ADS  Google Scholar 

  51. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, J. Opt. Soc. Am. A 6(3), 423 (1989)

    Article  ADS  Google Scholar 

  52. X. Zhang, X.S. Zhu, Y.W. Shi, Opt. Express 26(1), 130 (2018)

    Article  ADS  Google Scholar 

  53. X.J. Tan, X.S. Zhu, Opt. Express 24(14), 16016 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (NSFC), Grant No. 11975073 and 12035003. We would like to thank C. Chang, Y. Guo, and B.-H. Wu for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Ying Zhou or Cheng-Ran Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, PF., Zhou, HY., Miao, W. et al. Transmission characteristics of a cylindrically-symmetric core-cladding mode coupler in the terahertz regime. Appl. Phys. B 127, 98 (2021). https://doi.org/10.1007/s00340-021-07640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07640-7

Navigation