Skip to main content
Log in

Propagation of a radial phase-locked partially coherent elegant Laguerre–Gaussian beam array in non-Kolmogorov medium

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A model of a radial phase-locked partially coherent elegant Laguerre–Gaussian (PCELG) beam array has first been introduced in theory. The analytical propagation equation for the cross-spectral density function of a radial phase-locked PCELG beam array in non-Kolmogorov medium has been derived using the extended Huygens–Fresnel principle. The average intensity and spectral degree of coherence properties of a radial phase-locked PCELG beam array propagating in non-Kolmogorov medium have been studied in details using the numerical examples. One can find that the evolution properties of a radial phase-locked PCELG beam array propagating in non-Kolmogorov medium are affected by the initial beam parameters and the non-Kolmogorov medium, and the beam array propagating in non-Kolmogorov medium will evolve into a solid beam with Gaussian-like distribution in the far field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.T. Eyyuboğlu, Y. Cai, Non-Kolmogorov spectrum scintillation aspects of dark hollow and flat topped beams. Opt. Commun. 285, 969–974 (2012)

    Article  ADS  Google Scholar 

  2. Y. Huang, G. Zhao, Z. Duan, D. He, Z. Gao, F. Wang, Spreading and M-2-factor of elegant Hermite–Gaussian beams through non-Kolmogorov turbulence. J. Mod. Optic. 58, 912–917 (2011)

    Article  ADS  Google Scholar 

  3. F. Wang, X.L. Liu, Y.J. Cai, Propagation of partially coherent beam in turbulent atmosphere: a review. Prog. Electromagn. Res. 150, 123–143 (2015)

    Article  Google Scholar 

  4. Z.-Z. Song, Z.-J. Liu, K.-Y. Zhou, Q.-G. Sun, S.-T. Liu, Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence. Chin. Phys. B 26, 024201 (2017)

    Article  ADS  Google Scholar 

  5. X. Wang, M. Yao, X. Yi, Z. Qiu, Z. Liu, Spreading and evolution behavior of coherent vortices of multi-Gaussian Schell-model vortex beams propagating through non-Kolmogorov turbulence. Opt. Laser Technol. 87, 99–107 (2017)

    Article  ADS  Google Scholar 

  6. M. Tang, D. Zhao, X. Li, J. Wang, Propagation of radially polarized multi-cosine Gaussian Schell-model beams in non-Kolmogorov turbulence. Opt. Commun. 407, 392–397 (2018)

    Article  ADS  Google Scholar 

  7. H. Zhang, W. Fu, Polarization properties of square multi-Gaussian Schell-model beam propagating through non-Kolmogorov turbulence. Optik 134, 161–169 (2017)

    Article  ADS  Google Scholar 

  8. Y. Zhou, Y.S. Yuan, J. Qu, W. Huang, Propagation properties of Laguerre–Gaussian correlated Schell-model beam in non-Kolmogorov turbulence. Opt. Express 24, 10682–10693 (2016)

    Article  ADS  Google Scholar 

  9. J. Yu, Y. Chen, L. Liu, X. Liu, Y. Cai, Splitting and combining properties of an elegant Hermite–Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence. Opt. Express 23, 13467–13481 (2015)

    Article  ADS  Google Scholar 

  10. M. Cheng, Y. Zhang, Y. Zhu, J. Gao, W. Dan, Z. Hu, F. Zhao, Effects of non-Kolmogorov turbulence on the orbital angular momentum of Hankel–Bessel–Schell beams. Opt. Laser Technol. 67, 20–24 (2015)

    Article  ADS  Google Scholar 

  11. J. Ou, Y. Jiang, J. Zhang, H. Tang, Y. He, S. Wang, J. Liao, Spreading of spiral spectrum of Bessel–Gaussian beam in non-Kolmogorov turbulence. Opt. Commun. 318, 95–99 (2014)

    Article  ADS  Google Scholar 

  12. Z. Qin, R. Tao, P. Zhou, X. Xu, Z. Liu, Propagation of partially coherent Bessel–Gaussian beams carrying optical vortices in non-Kolmogorov turbulence. Opt. Laser Technol. 56, 182–188 (2014)

    Article  ADS  Google Scholar 

  13. E. Shchepakina, O. Korotkova, Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence. Opt. Express 18, 10650–10658 (2010)

    Article  ADS  Google Scholar 

  14. D. Liu, Y. Wang, Properties of a random electromagnetic multi-Gaussian Schell-model vortex beam in oceanic turbulence. Appl. Phys. B 124, 176 (2018)

    Article  ADS  Google Scholar 

  15. D. Zhi, R.M. Tao, P. Zhou, Y.X. Ma, W.M. Wu, X.L. Wang, L. Si, Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence. Opt. Commun. 387, 157–165 (2017)

    Article  ADS  Google Scholar 

  16. M.M. Tang, D.M. Zhao, Regions of spreading of Gaussian array beams propagating through oceanic turbulence. Appl. Opt. 54, 3407–3411 (2015)

    Article  ADS  Google Scholar 

  17. L. Lu, Z.Q. Wang, J.H. Zhang, P.F. Zhang, C.H. Qiao, C.Y. Fan, X.L. Ji, Average intensity of M × N Gaussian array beams in oceanic turbulence. Appl. Opt. 54, 7500–7507 (2015)

    Article  ADS  Google Scholar 

  18. D. Liu, Y. Wang, Evolution properties of a radial phased-locked partially coherent Lorentz-Gauss array beam in oceanic turbulence. Opt. Laser Technol. 103, 33–41 (2018)

    Article  ADS  Google Scholar 

  19. H.L. Liu, Y.F. Lu, J. Xia, D. Chen, W. He, X.Y. Pu, Radial phased-locked partially coherent flat-topped vortex beam array in non-Kolmogorov medium. Opt. Express 24, 19695–19712 (2016)

    Article  ADS  Google Scholar 

  20. K.L. Wang, C.H. Zhao, Propagation properties of a radial phased-locked partially coherent anomalous hollow beam array in turbulent atmosphere. Opt. Laser Technol. 57, 44–51 (2014)

    Article  ADS  Google Scholar 

  21. Y.P. Huang, P. Huang, F.H. Wang, G.P. Zhao, A.P. Zeng, The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite–Gaussian linear array beams. Opt. Commun. 336, 146–152 (2015)

    Article  ADS  Google Scholar 

  22. D. Liu, Y. Wang, H. Zhong, Average intensity of radial phased-locked partially coherent standard Hermite–Gaussian beam in oceanic turbulence. Opt. Laser Technol. 106, 495–505 (2018)

    Article  ADS  Google Scholar 

  23. Y. Mao, Z. Mei, J. Gu, Y. Zhao, Radial Gaussian-Schell-model array beams in oceanic turbulence. Appl. Phys. B 123, 111 (2017)

    Article  ADS  Google Scholar 

  24. L. Lu, P.F. Zhang, C.Y. Fan, C.H. Qiao, Influence of oceanic turbulence on propagation of a radial Gaussian beam array. Opt. Express 23, 2827–2836 (2015)

    Article  ADS  Google Scholar 

  25. H. Xu, Z. Cui, J. Qu, Propagation of elegant Laguerre–Gaussian beam in non-Kolmogorov turbulence. Opt. Express 19, 21163–21173 (2011)

    Article  ADS  Google Scholar 

  26. H.D.A. Jeffrey, Handbook of Mathematical Formulas and Integrals (4th Edition) (Academic Press, Cambridge, 2008)

    MATH  Google Scholar 

  27. E. Wolf, Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  28. G.Q. Zhou, Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere. Opt. Express 19, 24699–24711 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (11604038, 11875096, 11404048), Natural Science Foundation of Liaoning Province (201602062, 201602061) and the Fundamental Research Funds for the Central Universities (3132018235, 3132018236).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dajun Liu or Yaochuan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zhong, H., Wang, G. et al. Propagation of a radial phase-locked partially coherent elegant Laguerre–Gaussian beam array in non-Kolmogorov medium. Appl. Phys. B 125, 52 (2019). https://doi.org/10.1007/s00340-019-7161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7161-8

Navigation