Skip to main content
Log in

Tunable single- and dual-wavelength nanosecond Ti:Sapphire laser around 765 nm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the longitudinally pumped tunable single- and dual-wavelength nanosecond Ti:Sapphire laser operation around 765 nm by using a Brewster-cut single Ti:Sapphire crystal in combination with an intracavity prism and etalon. Tilting the etalon to a specific angle, single-wavelength operation at 767.9 nm is achieved first, with a maximum output power value of 1.3 W below 5.5 W pump power. Then, increasing the pump power leads to simultaneously operation at dual wavelength (765.0, 771.3 nm), (763.9, 772.2 nm), (763.5, 772.2 nm), and (762.4, 773.7 nm) with a maximum output power of ~ 2.98 W, pulse width of ~ 20 ns, and a laser slope efficiency of about 34.7% at 1 kHz repetition rate. By tilting the etalon, other dual- and single-wavelength laser operations could be achieved. Experimental results show that it is tunable in the region 750–840 nm which here is limited by the reflectivity of the cavity mirrors. We observed, when laser oscillates at dual wavelength, the separation of the wavelengths increased with pump power which could be because of thermal lensing in Ti:Sapphire. The output characteristics versus incident pump power at 1 and 5 kHz repetition rate show output power increases linearly with incident pump power with similar slope for both 1 and 5 kHz repetition rates, whereas pump threshold increased in the case of 5 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Hering, J.P. Lay, S. Stry (eds.), Laser in Environmental and Life Sciences: Modern Analytical Method (Springer, Heidelberg, 2003)

    Google Scholar 

  2. R.W. Farley, P.D. Dao, Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system. Appl. Opt. 34, 4269–4273 (1995)

    Article  ADS  Google Scholar 

  3. A. Saha, A. Ray, S. Mukhopadhyay, N. Sinha, P.K. Datta, Simultaneous multi-wavelength oscillation of Nd laser around 1.3 µm: a potential source for coherent terahertz generation. Opt. Express 29, 4721–4726 (2006)

    Article  ADS  Google Scholar 

  4. E. Herault, F. Balembois, P. Georges, 491 nm generation by sumfrequency mixing of diode pumped neodymium lasers. Opt. Express 13, 5653–5661 (2005)

    Article  ADS  Google Scholar 

  5. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd edn. (Springer, Berlin, 2003)

    Book  Google Scholar 

  6. G. Shayeganrad, P. Parvin, DIAL–phoswich hybrid system for remote sensing of radioactive plumes in order to evaluate external dose rate. Prog. Nucl. Energy 51, 420–433 (2008)

    Article  Google Scholar 

  7. W. Li, Q. Hao, J. Ding, H. Zeng, Continuous-wave multi-wavewavelength diode-pumped Yb:GYSO laser. J. Opt. A Pure Appl. Opt. 10, 095307 (2008)

    Article  ADS  Google Scholar 

  8. F. Wang, D.Y. Shen, D.Y. Fan, Q.S. Lu, Widely tunable dual-wavelength operation of a high-power Tm: fiber laser using volume Bragg gratings. Opt. Lett. 35, 2388–2390 (2010)

    Article  ADS  Google Scholar 

  9. G. Shayeganrad, L. Mashhadi, Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm. Appl. Phys. B 111, 189–194 (2012)

    Article  ADS  Google Scholar 

  10. G. Shayeganrad, Y.-C. Huang, L. Mashhadi, Tunable single and multiwavelength continuous-wave c-cut Nd:YVO4 laser. Appl. Phys. B 108, 67–72 (2012)

    Article  ADS  Google Scholar 

  11. G. Shayeganrad, Actively Q-switched Nd:YVO4 dual-wavelength stimulated Raman laser at 1178.9 nm and 1199.9 nm. Opt. Commun. 292, 131–134 (2013)

    Article  ADS  Google Scholar 

  12. C.W. Luo, Y.Q. Yang, I.T. Mak, Y.H. Chang, K. H.Wu, and T. Kobayashi, A widely tunable dual-wavelength CW Ti:sapphire laser with collinear output. Opt. Express 16, 3305 (2008)

    Article  ADS  Google Scholar 

  13. Z. Qin, Z. Qiao, G. Xie, P. Yuan, J. Ma, L. Qian, D. Jiang, F. Ma, F. Tang, L. Su, Femtosecond and dual-wavelength picosecond operations of Nd, La:SrF2 disordered crystal laser. IEEE Photon. J. 9, 1502007 (2017)

    Google Scholar 

  14. W. Li, Q. Hao, J. Ding, H. Zeng, Continuous-wave multi-wavelength diode-pumped Yb:GYSO laser. J Opt. A Pure Appl. Opt. 10, 095307 (2008)

    Article  ADS  Google Scholar 

  15. C.Y. Li, Y. Bo, J.L. Xu, C.Y. Tian, Q.J. Peng, D.F. Cui, Z.Y. Xu, Simultaneous dual-wavelength oscillation at 1116 and 1123 nm of Nd:YAG laser. Opt. Commun. 284, 4574–4576 (2011)

    Article  ADS  Google Scholar 

  16. A. Brenier, Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd(WO4)2 laser with chirped volume Bragg gratings. Laser Phys. Lett. 8, 20–524 (2011)

    Article  Google Scholar 

  17. B. Xu, Y. Wang, Y. Cheng, Z. Lin, H. Xu, Z. Cai, R. Moncorgé, Diode-pumped CW laser operation of a c-cut Nd:YAlO3 crystal on low-gain emission lines around 1.1 µm. IEEE Photon. J. 7, 1503407 (2015)

    Google Scholar 

  18. P. Maine, D.S.,P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988)

    Article  ADS  Google Scholar 

  19. M. Pessot, P.M., and G. Mourou, Opt. Commun. 62, 419 (1987)

    Article  ADS  Google Scholar 

  20. H. Riris, M. Rodriguez, J. Mao, G. Allan, J. Abshire, Abshire, Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar. Opt. Exp. 25, 29309–29327 (2017)

    Article  ADS  Google Scholar 

  21. H. Riris, M. Rodriguez, G.R. Allan, W. Hasselbrack, J. Mao, M. Stephen, J. Abshire, Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm. Appl. Opt. 52, 6369–6382 (2013)

    Article  ADS  Google Scholar 

  22. M. Bregnhøj, A. Blazquez-Castro, M. Westberg, T. Breitenbach, P.R. Ogilby, Direct 765 nm optical excitation of molecular oxygen in solution and in single mammalian cells. J. Phys. Chem. B 119, 5422–5429 (2015). https://doi.org/10.1021/acs.jpcb.5b01727

    Article  Google Scholar 

  23. G. Stern, B.A.,M. Robert-de-Saint-Vincent, J.P. Brantut, B. Battelier, T. Bourdel, P. Bouyer, A frequency doubled 1534 nm laser system for potassium laser cooling. Appl. Opt. 49, 3092–3095 (2010)

    Article  ADS  Google Scholar 

  24. G. Shayeganrad, Optimum design considerations for CW intra-cavity second harmonicgeneration in end-pumped solid-state lasers. Optik 124, 5591–5598 (2013)

    Article  ADS  Google Scholar 

  25. G. Shayeganrad, Efficient design considerations for end-pumped solid-state-lasers. Opt. Laser Technol. 44, 987–994 (2012)

    Article  ADS  Google Scholar 

  26. G. Shayeganrad, L. Mashhadi, Efficient analytic model to optimum design laser resonator and optical coupling system of diode-end-pumped solid-state lasers: influence of gain medium length and pump beam M2 factor. Appl. Opt. 47, 619–627 (2008)

    Article  ADS  Google Scholar 

  27. F.J. Duart, Tunable Laser Optics (Academic Press, United State of America, 2003)

    Google Scholar 

  28. M.H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  29. K. Deepa, Y. Paul raj, Y. Lingappa, Spectrophotometric determination of lead in medicinal leaf and environmental samples using 5-methylthiophene-2-carboxaldehyde ethylenediamine (MTCED). Der Pharm. Lett. 6, 380–388 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Shayeganrad.

Additional information

Gholamreza Shayeganrad: Senior member of OSA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayeganrad, G. Tunable single- and dual-wavelength nanosecond Ti:Sapphire laser around 765 nm. Appl. Phys. B 124, 162 (2018). https://doi.org/10.1007/s00340-018-7029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7029-3

Navigation