Skip to main content
Log in

A variable-temperature cavity ring-down spectrometer with application to line shape analysis of CO2 spectra in the 1600 nm region

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a new cavity ring-down spectroscopy system which was developed for variable-temperature absorption measurements (220–290 K) of atmospheric gases. This laser spectrometer was developed in the framework of the NASA Orbiting Carbon Observatory-2 project to improve our understanding of line shape parameters for carbon dioxide and oxygen. The apparatus consists of a monolithic, fixed-mirror ring-down cavity within a temperature-regulated enclosure, which is interrogated by a tunable, single-frequency diode laser. We experimentally characterize and model the dependence of the spectrum detuning axis at each setpoint temperature, and show that absolute frequencies are stable to within 200 kHz over several hours, corresponding to temperature stabilities better than 1 mK. We measure the R16e (30013-0001) 12C16O2 transition and carry out multi-spectrum analyses using two line profiles incorporating speed-dependent (quadratic approximation) and Dicke narrowing (hard collision assumption) effects. The resulting broadening coefficient and temperature exponent are in excellent agreement (0.05% level) with previous high-resolution Fourier-transform spectroscopy measurements, and the speed dependent broadening parameter is within 3% of the theoretical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.E. Miller, D. Crisp, P.L. DeCola, S.C. Olsen, J.T. Randerson, A.M. Michalak, A. Alkhaled, P. Rayner, D.J. Jacob, P. Suntharalingam, D.B.A. Jones, A.S. Denning, M.E. Nicholls, S.C. Doney, S. Pawson, H. Boesch, B.J. Connor, I.Y. Fung, D. O’Brien, R.J. Salawitch, S.P. Sander, B. Sen, P. Tans, G.C. Toon, P.O. Wennberg, S.C. Wofsy, Y.L. Yung, R.M. Law, J. Geophys. Res. 112, D10314 (2007). doi:10.1029/2006JD007659

  2. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  3. D. Romanini, A.A. Kachanov, F. Stoeckel, Chem. Phys. Lett. 270, 538 (1997)

    Article  ADS  Google Scholar 

  4. J. Morville, D. Romanini, A. A. Kachanov, M. Chenevier, Appl. Phys. B 78, 465 (2004)

    Article  ADS  Google Scholar 

  5. J.T. Hodges, R. Ciuryło, Rev. Sci. Instrum. 76, 023112 (2005)

    Article  ADS  Google Scholar 

  6. J. T. Hodges and D. Lisak, Appl. Phys. B 85, 375 (2006)

    Article  ADS  Google Scholar 

  7. J.T. Hodges, H.P. Layer, W.W. Miller, G.E. Scace, Rev. Sci. Instrum 75, 849 (2004)

    Article  ADS  Google Scholar 

  8. D. A. Long, M. Okumura, C. E. Miller, J. T. Hodges, Appl. Phys. B 105, 471 (2011)

    Article  ADS  Google Scholar 

  9. D.A. Long, A. Cygan, R.D. van Zee, M. Okumura, C.E. Miller, D. Lisak, J.T. Hodges, Chem. Phys. Lett. 536, 1 (2012)

    Article  ADS  Google Scholar 

  10. D.A. Long, D.J. Robichaud, J.T. Hodges, J. Chem. Phys. 137, 014307 (2012)

    Article  ADS  Google Scholar 

  11. G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D.F. Plusquellic, J.T. Hodges, D.A. Long, Nat. Photon. 7, 532 (2013)

  12. D.A. Long, G.-W. Truong, R. D. van Zee, D.F. Plusquellic, J.T. Hodges, Appl. Phys. B 114, 489 (2013)

    Article  ADS  Google Scholar 

  13. S. Kassi, A. Campargue, J. Chem. Phys. 137, 234201 (2012)

    Article  ADS  Google Scholar 

  14. A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J.T. Hodges, R.S. Trawiński, R. Ciuryło, Phys. Rev. A 85, 022508 (2012)

    Article  ADS  Google Scholar 

  15. V.T. Sironneau, J.T. Hodges, J. Quant. Spectrosc. Radiat. Transf. 152, 1 (2015)

    Article  ADS  Google Scholar 

  16. H.Lin, Z.D. Reed, V.T. Sironneau, J.T. Hodges, J. Quant. Spectrosc. Radiat. Transf. 161, 11 (2015)

    Article  ADS  Google Scholar 

  17. T. Delahaye, S.E. Maxwell, Z.D. Reed, H. Lin, J.T. Hodges, K. Sung, V.M. Devi, T. Warneke, P. Spietz, H. Tran, J. Geophys. Res. Atmos 121, 2016JD025024 (2016)

    Article  Google Scholar 

  18. Y. Perez-Delgado, C.E. Manzanares, Appl. Phys. B 106, 971 (2011)

    Article  ADS  Google Scholar 

  19. Y. Perez-Delgado, C.E. Manzanares, J. Phys. Chem. A 114, 7918 (2010)

    Article  Google Scholar 

  20. Y. Perez-Delgado, E.K. Lewis, C.J. Moehnke, M.C. Salazar, A.J. Hernandez, C.E. Manzanares, Mol. Phys 107, 1367 (2009)

    Article  ADS  Google Scholar 

  21. E.K. Lewis, C.J. Moehnke, J.G. Navea, C.E. Manzanares, Rev. Sci. Instrum 77, 073107 (2006)

    Article  ADS  Google Scholar 

  22. C.J. Moehnke, E.K. Lewis, A. Lopez-Calvo, C.E. Manzanares, Chem. Phys. Lett. 418, 576 (2006)

    Article  ADS  Google Scholar 

  23. J. Morville, D. Romanini, A. Campargue, R. Bacis, Chem. Phys. Lett. 363, 498 (2002)

    Article  ADS  Google Scholar 

  24. S. Kassi, D. Romanini, A. Campargue, Chem. Phys. Lett. 477, 17 (2009)

    Article  ADS  Google Scholar 

  25. P. E. Ciddor, Appl. Opt. 35, 1566 (1996).

    Article  ADS  Google Scholar 

  26. D.J. Robichaud, J.T. Hodges, P. Masłowski, L.Y. Yeung, M. Okumura, C.E. Miller, L.R. Brown, J. Mol. Spectrosc. 251, 27 (2008)

    Article  ADS  Google Scholar 

  27. P.R. Berman, J. Quant. Spectrosc. Radiat. Transf. 12, 1331 (1972)

    Article  ADS  Google Scholar 

  28. S.G. Rautian, I.I. Sobel’man, Sov. Phys. Uspekhi 9, 701 (1967)

    Article  ADS  Google Scholar 

  29. R. Ciuryło, Phys. Rev. A 58, 1029 (1998)

    Article  ADS  Google Scholar 

  30. F. Rohart, H. Mäder, H.-W. Nicolaisen, J. Chem. Phys. 101, 6475 (1994)

    Article  ADS  Google Scholar 

  31. F. Rohart, A. Ellendt, F. Kaghat, H. Mäder, J. Mol. Spectrosc. 185, 222 (1997)

    Article  ADS  Google Scholar 

  32. B. Lance, G. Blanquet, J. Walrand, J.-P. Bouanich, J. Mol. Spectrosc 185, 262 (1997)

    Article  ADS  Google Scholar 

  33. A.S. Pine, R. Ciurylo, J. Mol. Spectrosc 208, 180 (2001)

    Article  ADS  Google Scholar 

  34. N. H. Ngo, D. Lisak, H. Tran, J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 129, 89 (2013)

    Article  ADS  Google Scholar 

  35. J. Tennyson, P.F. Bernath, A. Campargue, A.G. Csaszar, L. Daumont, R.R. Gamache, J.T. Hodges, D. Lisak, O.V. Naumenko, L.S. Rothman, H. Tran, N.F. Zobov, J. Buldyreva, C.D. Boone, M.D. De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, J. Murray, N.H. Ngo, O.L. Polyansky, D. Weidmann, Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report). Pure Appl. Chem. 86, 1931 (2014)

  36. D. Lisak, A. Cygan, P. Wcisło, R. Ciuryło, J. Quant. Spectrosc. Radiat. Transf. 151, 43 (2015)

    Article  ADS  Google Scholar 

  37. L. Régalia-Jarlot, V. Zéninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, G. Durry, J. Quant. Spectrosc. Radiat. Transf. 101, 325 (2006)

    Article  ADS  Google Scholar 

  38. R.A. Toth, L.R. Brown, C.E. Miller, V.M. Devi, D.C. Benner, J. Mol. Spectrosc 239, 221 (2006)

    Article  ADS  Google Scholar 

  39. R.A. Toth, L.R. Brown, C.E. Miller, V.M. Devi, D.C. Benner, J. Mol. Spectrosc 239, 243 (2006)

    Article  ADS  Google Scholar 

  40. R.A. Toth, C.E. Miller, V. Malathy Devi, D.C. Benner, L.R. Brown, J. Mol. Spectrosc 246, 133 (2007)

    Article  ADS  Google Scholar 

  41. R.A. Toth, C.E. Miller, L.R. Brown, V.M. Devi, D.C. Benner, J. Mol. Spectrosc 243, 43 (2007)

    Article  ADS  Google Scholar 

  42. R.A. Toth, L.R. Brown, C.E. Miller, V. Malathy Devi, D.C. Benner, J. Quant. Spectrosc. Radiat. Transf. 109, 906 (2008)

    Article  ADS  Google Scholar 

  43. V.M. Devi, D.C. Benner, L.R. Brown, C.E. Miller, R.A. Toth, J. Mol. Spectrosc 245, 52 (2007)

    Article  ADS  Google Scholar 

  44. V.M. Devi, D.C. Benner, L.R. Brown, C.E. Miller, R.A. Toth, J. Mol. Spectrosc 242, 90 (2007)

    Article  ADS  Google Scholar 

  45. A. Predoi-Cross, A.V. Unni, W. Liu, I. Schofield, C. Holladay, A.R.W. McKellar, D. Hurtmans, J. Mol. Spectrosc. 245, 34 (2007)

    Article  ADS  Google Scholar 

  46. A. Predoi-Cross, W. Liu, C. Holladay, A.V. Unni, I. Schofield, A.R.W. McKellar, D. Hurtmans, J. Mol. Spectrosc. 246, 98 (2007)

    Article  ADS  Google Scholar 

  47. J.-M. Hartmann, H. Tran, G.C. Toon, Atmos. Chem. Phys. 9, 7303 (2009)

    Article  ADS  Google Scholar 

  48. D. A. Long, G.-W. Truong, J.T. Hodges, C. E. Miller, J. Quant. Spectrosc. Radiat. Transf. 130, 112 (2013)

    Article  ADS  Google Scholar 

  49. J. Lamouroux, R.R. Gamache, A.L. Laraia, J.-M. Hartmann, C. Boulet, J. Quant. Spectrosc. Radiat. Transf. 113, 1536 (2012)

    Article  ADS  Google Scholar 

  50. R. R. Gamache, J. Lamouroux, A.L. Laraia, J.-M. Hartmann, C. Boulet, J. Quant. Spectrosc. Radiat. Transf. 113, 976 (2012)

    Article  ADS  Google Scholar 

  51. C.E. Miller, L.R. Brown, J. Mol. Spectrosc. 228, 329 (2004)

    Article  ADS  Google Scholar 

  52. C.E. Miller, M.A. Montgomery, R.M. Onorato, C. Johnstone, T.P. McNicholas, B. Kovaric, L.R. Brown, J. Mol. Spectrosc. 228, 355 (2004)

    Article  ADS  Google Scholar 

  53. A. Predoi-Cross, A.R.W. McKellar, D.C. Benner, V.M. Devi, R.R. Gamache, C.E. Miller, R.A. Toth, L.R. Brown, Can. J. Phys. 87, 517 (2009)

    Article  ADS  Google Scholar 

  54. V. M. Devi, D. C. Benner, K. Sung, L. R. Brown, T. J. Crawford, C. E. Miller, B. J. Drouin, V. H. Payne, S. Yu, M. A. H. Smith, A. W. Mantz, R. R. Gamache, J. Quant. Spectrosc. Radiat. Transf. 177, 117 (2016)

    Article  ADS  Google Scholar 

  55. A. Predoi-Cross, W. Liu, R. Murphy, C. Povey, R. R. Gamache, A. L. Laraia, A. R. W. McKellar, D. R. Hurtmans, V. Malathy Devi, J. Quant. Spectrosc. Radiat. Transf. 111, 1065 (2010)

    Article  ADS  Google Scholar 

  56. D. A. Long, S. Wójtewicz, C. E. Miller, J. T. Hodges, J. Quant. Spectrosc. Radiat. Transf. 161, 35 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIST Greenhouse Gas Measurements and Climate Research Program and NASA Contract NNH15AZ96I (Orbiting Carbon Observatory-2 Science Team). We also thank Dr. Piotr Wcisło, University of Nicolas Copernicus, Toruń Poland regarding the derivation of Eqs. 11 and 12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Hodges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghysels, M., Liu, Q., Fleisher, A.J. et al. A variable-temperature cavity ring-down spectrometer with application to line shape analysis of CO2 spectra in the 1600 nm region. Appl. Phys. B 123, 124 (2017). https://doi.org/10.1007/s00340-017-6686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6686-y

Keywords

Navigation