Skip to main content
Log in

Spin-polarized lithium diffusion in a glass hot-vapor cell

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report diffusion coefficients of optically pumped lithium atoms in helium buffer gas. The free-induction decay and the spin-echo signals of ground-state atoms were optically detected in an external magnetic field with the addition of field gradient. Lithium hot vapor was produced in a borosilicate-glass cell at a temperature between 290 and \(360\,^{\circ }\hbox {C}\). The simple setup using the glass cells enabled lithium atomic spectroscopy in a similar way to other alkali-metal atoms and study of the collisional properties of lithium atoms in a hot-vapor phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.R. Vidal, J. Cooper, Heat-pipe oven: a new, well-defined metal vapor device for spectroscopic measurements. J. Appl. Phys. 40(8), 3370–3374 (1969)

    Article  ADS  Google Scholar 

  2. P. Minguzzi, F. Strumia, P. Violino, Optical pumping of lithium vapour. Opt. Commun. 1(1), 1–2 (1969)

    Article  ADS  Google Scholar 

  3. V.J. Slabinski, R.L. Smith, Lithium vapor cell and discharge lamp using MgO windows. Rev. Sci. Instrum. 42(9), 1334–1338 (1971)

    Article  ADS  Google Scholar 

  4. I.E. Olivares, A.E. Duarte, T. Lokajczyk, A. Dinklage, F.J. Duarte, Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven. J. Opt. Soc. Am. B 15(7), 1932–1939 (1998)

    Article  ADS  Google Scholar 

  5. D. Sun, C. Zhou, L. Zhou, J. Wang, M. Zhan, Modulation transfer spectroscopy in a lithium atomic vapor cell. Opt. Express 24(10), 10649–10662 (2016)

    Article  ADS  Google Scholar 

  6. A. Gallagher, Noble-gas broadening of the Li resonance line. Phys. Rev. A 12, 133–138 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  7. K.C. Brog, T.G. Eck, H. Wieder, Fine and hyperfine structure of the \(2 ^{2}p\) term of \(\text{Li}^{6}\) and \(\text{Li}^{7}\). Phys. Rev. 153, 91–103 (1967)

    Article  ADS  Google Scholar 

  8. C.J. Sansonetti, C.E. Simien, J.D. Gillaspy, J.N. Tan, S.M. Brewer, R.C. Brown, S. Wu, J.V. Porto, Absolute transition frequencies and quantum interference in a frequency comb based measurement of the \(^{6,7}\text{LiD}\) lines. Phys. Rev. Lett. 107, 023001 (2011)

    Article  ADS  Google Scholar 

  9. M. Taglieber, A.-C. Voigt, T. Aoki, T.W. Hänsch, K. Dieckmann, Quantum degenerate two-species fermi-fermi mixture coexisting with a bose-einstein condensate. Phys. Rev. Lett. 100, 010401 (2008)

    Article  ADS  Google Scholar 

  10. S. Brakhane, W. Alt, D. Meschede, C. Robens, G. Moon, A. Alberti, Note: ultra-low birefringence dodecagonal vacuum glass cell. Rev. Sci. Instrum. 86(12), 126108 (2015)

    Article  ADS  Google Scholar 

  11. J.J. Wright, L.C. Balling, R.H. Lambert, Hyperfine splittings and pressure shifts of \(\text{Li}^{6}\) and \(\text{Li}^{7}\). Phys. Rev. 183, 180–185 (1969)

    Article  ADS  Google Scholar 

  12. S .N. Atutov, B .V. Bondarev, S .M. Kobtzev, P .V. Kolinko, S .P. Podjachev, A .M. Shalagin, Light-induced diffusive pulling (pushing) of lithium atoms into a laser beam. Measurement of diffusion coefficients of lithium in 2p and 2s states in noble gases. Opt. Commun. 115((3–4)), 276–282 (1995)

    Article  ADS  Google Scholar 

  13. W. Happer, Y.-Y. Jau, T.G. Walker, Optically Pumped Atoms (Wiley, Weinheim, 2010)

    Book  Google Scholar 

  14. D. Budker, M. Romalis, Optical magnetometry. Nat. Phys. 3(4), 227–234 (2007)

    Article  Google Scholar 

  15. R.F. Haglund, D. Fick, B. Horn, E. Koch, Spin-polarized nuclei as probes of electromagnetic field distributions on solid surfaces. Hyperfine Interact. 30(2), 73–108 (1986)

    Article  ADS  Google Scholar 

  16. K. Ishikawa, Spin-injection optical pumping of molten cesium salt and its NMR diagnosis. AIP Adv. 5(7), 077122 (2015)

    Article  ADS  Google Scholar 

  17. B. Patton, K. Ishikawa, Y.-Y. Jau, W. Happer, Intrinsic impurities in glass alkali-vapor cells. Phys. Rev. Lett. 99(2), 027601 (2007)

    Article  ADS  Google Scholar 

  18. J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, W. Happer, Modification of glass cell walls by rubidium vapor. Phys. Rev. A 79, 042905 (2009)

    Article  ADS  Google Scholar 

  19. A.N. Nesmeyanov, Vapor pressure of the chemical elements (North-Holland, Amsterdam, 1963)

  20. P.T. Callaghan, Principles of nuclear magnetic resonance microscopy (Clarendon, Oxford, UK, 1991)

    Google Scholar 

  21. K. Ishikawa, T. Yabuzaki, Diffusion coefficient and sublevel coherence of Rb atoms in \(\text{N}_{2}\) buffer gas. Phys. Rev. A 62, 065401 (2000)

    Article  ADS  Google Scholar 

  22. S. Appelt, A.B. Baranga, A.R. Young, W. Happer, Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells. Phys. Rev. A 59, 2078–2084 (1999)

    Article  ADS  Google Scholar 

  23. K. Ishikawa, T. Kojima, T. Hasegawa, Y. Takagi, Spin dynamics of dense alkali-metal atoms. Phys. Rev. A 65, 032511 (2002)

    Article  ADS  Google Scholar 

  24. K. Ishikawa, Y. Anraku, Y. Takahashi, T. Yabuzaki, Optical magnetic-resonance imaging of laser-polarized Cs atoms. J. Opt. Soc. Am. B 16(1), 31–37 (1999)

    Article  ADS  Google Scholar 

  25. T.G. Walker, J.H. Thywissen, W. Happer, Spin-rotation interaction of alkali-metal-He-atom pairs. Phys. Rev. A 56, 2090–2094 (1997)

    Article  ADS  Google Scholar 

  26. F.A. Franz, E. Lüscher, Spin relaxation of optically pumped cesium. Phys. Rev. 135, A582–A588 (1964)

    Article  ADS  Google Scholar 

  27. K. Ishikawa, B. Patton, B.A. Olsen, Y.-Y. Jau, W. Happer, Transfer of spin angular momentum from Cs vapor to nearby Cs salts through laser-induced spin currents. Phys. Rev. A 83(6), 063410 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Numbers 25610115 and 16H04030. KI acknowledges N. Hamada for setup of lithium optogalvano saturation spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, K. Spin-polarized lithium diffusion in a glass hot-vapor cell. Appl. Phys. B 122, 224 (2016). https://doi.org/10.1007/s00340-016-6505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6505-x

Keywords

Navigation