Skip to main content

Advertisement

Log in

Chirped-pulse four-wave Raman mixing in molecular hydrogen

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Four-wave Raman mixing (FWRM) in molecular hydrogen was studied using chirped pump and Stokes pulses emitting at 802 and 1,203 nm, respectively. The group delay dispersion (GDD) of the anti-Stokes pulse was examined employing a frequency-resolved optical gating system at different GDDs of the pump and Stokes pulses (0 or ±1,000 fs2). As a result, the energy and the sign of GDD for the anti-Stokes pulse remained unchanged, when the pump and Stokes pulses had the GDD with the same sign. When the sign was not the same, the energy decreased and only the portion useful for resonant FWRM was converted into a Raman emission. This technique has a potential for use in compensation of dispersion by passing the negatively chirped high-order Raman sidebands through the optics with positive chirps in the spectral region from the deep-ultraviolet to the near-infrared, to generate multiple transform-limited Raman pulses and then to produce an ultrashort optical pulse by a Fourier synthesis of these Raman emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A.L. Cavalieri, Y. Komninos, Th Mercouris, C.A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A.M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, V.S. Yakovlev, Science 328, 1658 (2010)

    Article  ADS  Google Scholar 

  2. R. Weigand, J.T. Mendonça, H.M. Crespo, Phys. Rev. A 79, 063838 (2009)

    Article  ADS  Google Scholar 

  3. T. Imasaka, S. Kawasaki, N. Ishibashi, Appl. Phys. B 49, 389 (1989)

    Article  ADS  Google Scholar 

  4. H. Kawano, Y. Hirakawa, T. Imasaka, Appl. Phys. B 65, 1 (1997)

    Article  ADS  Google Scholar 

  5. S. Yoshikawa, T. Imasaka, Opt. Commun. 96, 94 (1993)

    Article  ADS  Google Scholar 

  6. Y. Kida, T. Nagahara, S. Zaitsu, M. Matuse, T. Imasaka, Opt. Express 14, 3083 (2006)

    Article  ADS  Google Scholar 

  7. Y. Kida, S. Zaitsu, T. Imasaka, Opt. Express 16, 13492 (2008)

    Article  ADS  Google Scholar 

  8. N. Yasaka, Y. Kida, S. Zaitsu, T. Imasaka, J. Appl. Phys. 108, 056104 (2010)

    Article  ADS  Google Scholar 

  9. A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, Phys. Rev. Lett. 83, 2560 (1999)

    Article  ADS  Google Scholar 

  10. M. Wittmann, A. Nazarkin, G. Korn, Phys. Rev. Lett. 84, 5508 (2000)

    Article  ADS  Google Scholar 

  11. M. Wittmann, A. Nazarkin, G. Korn, Opt. Lett. 26, 298 (2001)

    Article  ADS  Google Scholar 

  12. N. Zhavoronkov, G. Korn, Phys. Rev. Lett. 88, 203901 (2002)

    Article  ADS  Google Scholar 

  13. D.D. Yavuz, D.R. Walker, M.Y. Shverdin, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 91, 233602 (2003)

    Article  ADS  Google Scholar 

  14. M. Katsuragawa, K. Yokoyama, T. Onose, K. Misawa, Opt. Express 13, 5628 (2005)

    Article  ADS  Google Scholar 

  15. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A.H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, L.-H. Peng, Science 331, 1165 (2011)

    Article  ADS  Google Scholar 

  16. T. Suzuki, M. Hirai, M. Katsuragawa, Phys. Rev. Lett. 101, 243602 (2008)

    Article  ADS  Google Scholar 

  17. Z.-M. Hsieh, C.-J. Lai, H.-S. Chan, S.-Y. Wu, C.-K. Lee, W.-J. Chen, C.-L. Pan, F.-G. Yee, A.H. Kung, Phys. Rev. Lett. 102, 213902 (2009)

    Article  ADS  Google Scholar 

  18. F.C. Turner, A. Trottier, D. Strickland, L.L. Losev, Opt. Commun. 270, 419 (2007)

    Article  ADS  Google Scholar 

  19. C. Turner, D. Strickland, Opt. Lett. 33, 405 (2008)

    Article  ADS  Google Scholar 

  20. E. Sali, K.J. Mendham, J.W.G. Tisch, T. Halfmann, J.P. Marangos, Opt. Lett. 29, 495 (2004)

    Article  ADS  Google Scholar 

  21. E. Sali, P. Kinsler, G.H.C. New, K.J. Mendham, T. Halfmann, J.W.G. Tisch, J.P. Marangos, Phys. Rev. A 72, 013813 (2005)

    Article  ADS  Google Scholar 

  22. O. Shitamichi, T. Imasaka, Opt. Express 20, 27959 (2012)

    Article  ADS  Google Scholar 

  23. T. Hellerer, A.M.K. Enejder, A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004)

    Article  ADS  Google Scholar 

  24. M. Tani, T. Koizumi, H. Sumikura, M. Yamaguchi, K. Yamamoto, M. Hangyo, Appl. Phys. Express 3, 072401 (2010)

    Article  ADS  Google Scholar 

  25. D.R. Richardson, R.P. Lucht, W.D. Kulatilaka, S. Roy, J.R. Gord, Appl. Phys. B 104, 699 (2011)

    Article  ADS  Google Scholar 

  26. M. Zhi, A.V. Sokolov, New J. Phys. 10, 025032 (2008)

    Article  ADS  Google Scholar 

  27. M. Zhi, A.V. Sokolov, IEEE J. Sel. Top. Quantum Electron 18, 460 (2012)

    Article  Google Scholar 

  28. F.X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications: Topics in Applied Physics (Springer, New York, 2004)

  29. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Massachusetts, 2002)

    Google Scholar 

  30. T. Imasaka, T. Okuno, T. Imasaka, Appl. Phys. B 113, 543 (2013)

    Article  ADS  Google Scholar 

  31. A.L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V.S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, R. Kienberger, New J. Phys. 9, 242 (2007)

    Article  ADS  Google Scholar 

  32. J. Liu, T. Kobayashi, Opt. Lett. 34, 2402 (2009)

    Article  ADS  Google Scholar 

  33. J. Liu, T. Kobayashi, Opt. Commun. 283, 1114 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-Aid for the Global COE program, “Science for Future Molecular Systems” from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 23245017 and 26220804. This study was also supported by the Steel Industry Foundation for the Advancement of Environmental Protection Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Totaro Imasaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shitamichi, O., Kida, Y. & Imasaka, T. Chirped-pulse four-wave Raman mixing in molecular hydrogen. Appl. Phys. B 117, 723–730 (2014). https://doi.org/10.1007/s00340-014-5887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5887-x

Keywords

Navigation