Skip to main content
Log in

A compact resonant Π-shaped photoacoustic cell with low window background for gas sensing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A resonant photoacoustic cell capable of detecting the traces of gases at an amplitude-modulation regime is represented. The cell is designed so as to minimize the window background for the cell operation at a selected acoustic resonance. A compact prototype cell (the volume of acoustic cavity of ~0.2 cm3, total cell weight of 3.5 g) adapted to the narrow diffraction-limited beam of near-infrared laser is produced and examined experimentally. The noise-associated measurement error and laser-initiated signals are studied as functions of modulation frequency. The background signal and useful response to light absorption by the gas are analyzed in measurements of absorption for ammonia traces in nitrogen flow with the help of a pigtailed DFB laser diode operated near a wavelength of 1.53 µm. The performance of absorption detection and gas-leak sensing for the prototype operated at the second longitudinal acoustic resonance (the resonance frequency of ~4.38 kHz, Q-factor of ~13.9) is estimated. The noise-equivalent absorption normalized to laser-beam power, and detection bandwidth is ~1.44 × 10−9 cm−1 W Hz−1/2. The amplitude of the window-background signal is equivalent to an absorption coefficient of ~2.82 × 10−7 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.P. Zharov, V.S. Letokhov, Laser Optoacoustic Spectroscopy (Springer, Berlin, 1986)

    Book  Google Scholar 

  2. R.F. Curl, F.K. Tittel, Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 98, 219 (2002)

    Article  Google Scholar 

  3. F.J.M. Harren, L.J.J. Laarhoven, in Optics Encyclopedia, ed. by T.G. Brown, K. Creath, H. Kogelnik, M.A. Kriss, J. Schmit, M.J. Weber (Wiley-VCH, Weinheim, 2004), pp. 3021–3056

    Google Scholar 

  4. M.W. Sigrist, in Handbook of High-Resolution Spectroscopy, ed. by M. Quack, F. Merkt (Wiley, Chicester, 2011), pp. 1153–1237

    Google Scholar 

  5. A.K.Y. Ngai, S.T. Persijn, M.M.J.W. van Herpen, S.M. Cristescu, F.J.M. Harren, in Mid-Infrared Coherent Sources and Applications, ed. by M. Ebrahim-Zadeh, I.T. Sorokina (Springer, Dordrecht, 2008), pp. 511–533

    Chapter  Google Scholar 

  6. A. Elia, P.M. Lugarà, C. Di Franco, V. Spagnolo, Sensors 9, 9616 (2009)

    Article  Google Scholar 

  7. M. Hippler, C. Mohr, K.A. Keen, E.D. McNaghten, J. Chem. Phys. 133, 044308 (2010)

    Article  ADS  Google Scholar 

  8. A. Rossi, R. Buffa, M. Scotoni, D. Bassi, S. Iannotta, A. Boschetti, Appl. Phys. Lett. 87, 041110 (2005)

    Article  ADS  Google Scholar 

  9. S.M. Cristescu, S.T. Persijn, S. te Lintel Hekkert, F.J.M. Harren, Appl. Phys. B 92, 343 (2008)

    Article  ADS  Google Scholar 

  10. V. Hanyecz, A. Mohacsi, A. Pogany, A. Varga, Z. Bozoki, I. Kovacs, G. Szabo, Vib. Spectrosc. 52, 63 (2010)

    Article  Google Scholar 

  11. A. Mukherjee, M. Prasanna, M. Lane, R. Go, I. Dunayevskiy, A. Tsekoun, C.K.N. Patel, Appl. Opt. 47, 4884 (2008)

    Article  ADS  Google Scholar 

  12. J.M. Rey, C. Romer, M. Gianella, M.W. Sigrist, Appl. Phys. B 100, 189 (2010)

    Article  ADS  Google Scholar 

  13. C.-M. Lee, K.V. Bychkov, V.A. Kapitanov, A.I. Karapuzikov, Y.N. Ponomarev, I.V. Sherstov, V.A. Vasiliev, Opt. Eng. 46, 064302 (2007)

    Article  ADS  Google Scholar 

  14. S.L. Firebaugh, K.F. Jensen, M.A. Schmidt, J. Micro Syst. 10, 232 (2001)

    Article  Google Scholar 

  15. P.M. Pellegrino, R.G. Polcawich, Proc. SPIE 5085, 52 (2003)

    Article  ADS  Google Scholar 

  16. A. Miklos, P. Hess, Z. Bozoki, Rev. Sci. Instr. 72, 1937 (2001)

    Article  ADS  Google Scholar 

  17. A.L. Palanetski, V.S. Starovoitov, Proc. SPIE 6733, 67331I (2007)

    Article  ADS  Google Scholar 

  18. Tracer-gas leak testing method, Wikipedia: http://en.wikipedia.org/wiki/Tracer-gas_leak_testing_method

  19. N. Muller, R. Ellefson, W. Grosse Bley, in Handbook of Vacuum Technology, ed. by K. Jousten (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  20. Helium, hydrogen and halogen leak detectors: http://products.inficon.com/en-us/nav-products/

  21. Helium leak detectors: http://www.pfeiffer-vacuum.com/products/leak-detectors/container.action

  22. Helium and halogen gas detectors: http://www.ionscience.com/products

  23. V. Zeninari, A. Grossel, L. Joly, T. Decarpenterie, B. Grouiez, B. Bonno, B. Parvitte, Cent. Eur. J. Phys. 8, 194 (2010)

    Article  Google Scholar 

  24. W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth, Sensors 10, 2492 (2010)

    Article  Google Scholar 

  25. R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1 (2010)

    Article  ADS  Google Scholar 

  26. A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002)

    Article  ADS  Google Scholar 

  27. N. Petra, J. Zweck, A.A. Kosterev, S.E. Minkoff, D. Thomazy, Appl. Phys. B 94, 673 (2009)

    Article  ADS  Google Scholar 

  28. A.K.Y. Ngai, S.T. Persijn, I.D. Lindsay, A.A. Kosterev, P. Gross, C.J. Lee, S.M. Cristescu, F.K. Tittel, K.-J. Boller, F.J.M. Harren, Appl. Phys. B 89, 123 (2007)

    Article  ADS  Google Scholar 

  29. S. Schilt, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 95, 813 (2009)

    Article  ADS  Google Scholar 

  30. V. Spagnolo, A.A. Kosterev, L. Dong, R. Lewicki, F.K. Tittel, Appl. Phys. B 100, 125 (2010)

    Article  ADS  Google Scholar 

  31. M. Kohring, A. Pohlkotter, U. Willer, M. Angelmahr, W. Schade, Appl. Phys. B 102, 133 (2011)

    Article  ADS  Google Scholar 

  32. H. Yi, W. Chen, S. Sun, K. Liu, T. Tan, X. Gao, Opt. Express 20, 9187 (2012)

    Article  ADS  Google Scholar 

  33. M.D. Wojcik, M.C. Phillips, B.D. Cannon, M.S. Taubman, Appl. Phys. B 85, 307 (2006)

    Article  ADS  Google Scholar 

  34. A.V. Gorelik, V.S. Starovoitov, Opt. Spectrosc. 107, 830 (2009)

    Article  Google Scholar 

  35. A.V. Gorelik, A.L. Ulasevich, F.N. Nikonovich, M.P. Zakharich, V.A. Firago, N.S. Kazak, V.S. Starovoitov, Appl. Phys. B 100, 283 (2010)

    Article  ADS  Google Scholar 

  36. D.A. Heaps, P. Pellegrino, Proc. SPIE 6554, 65540F-1–65540F-9 (2007)

    Article  Google Scholar 

  37. P. Pellegrino, R. Polcawich, S.L. Firebaugh, Proc. SPIE 5416, 42 (2004)

    Article  ADS  Google Scholar 

  38. E.L. Holthoff, D.A. Heaps, P.M. Pellegrino, IEEE Sens. J. 10, 572 (2010)

    Article  Google Scholar 

  39. E. Holthoff, J. Bender, P. Pellegrino, A. Fisher, Sensors 10, 1986 (2010)

    Article  Google Scholar 

  40. S. Bernegger, M.W. Sigrist, Appl. Phys. B 44, 125 (1987)

    Article  ADS  Google Scholar 

  41. A.L. Ulasevich, A.V. Gorelik, A.A. Kouzmouk, V.S. Starovoitov, Infrared Phys. Technol. 60, 174 (2013)

    Article  ADS  Google Scholar 

  42. A.V. Gorelik, A.L. Ulasevich, A.A. Kouzmouk, V.S. Starovoitov, Opt. Spectrosc. 115, 110 (2013)

    Article  Google Scholar 

  43. M. Wolff, H. Groninga, B. Baumann, B. Kost, H. Harde, Acta Acust. 91, 1477 (2005)

    Google Scholar 

  44. B. Kost, B. Baumann, M. Germer, M. Wolff, M. Rosenkranz, Appl. Phys. B 102, 87 (2011)

    Article  ADS  Google Scholar 

  45. L. Duggen, N. Lopes, M. Willatzen, H.-G. Rubahn, Int. J. Thermophys. 32, 774 (2011)

    Article  ADS  Google Scholar 

  46. www.comsol.com

  47. M.J. Weber, Handbook of Optical Materials, September (CRC Press, Boca Raton, 2002)

    Book  Google Scholar 

  48. V.S. Starovoitov, S.A. Trushin, Pure Appl. Opt. 2, 505 (1993)

    Article  ADS  Google Scholar 

  49. M.E. Webber, D.S. Baer, R.K. Hanson, Appl. Opt. 40, 2031 (2001)

    Article  ADS  Google Scholar 

  50. H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, X. Gao, J. Quant. Spectrosc. Radiat. Transf. 110, 347 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Starovoitov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulasevich, A.L., Gorelik, A.V., Kouzmouk, A.A. et al. A compact resonant Π-shaped photoacoustic cell with low window background for gas sensing. Appl. Phys. B 117, 549–561 (2014). https://doi.org/10.1007/s00340-014-5867-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5867-1

Keywords

Navigation