Skip to main content
Log in

An RFQ cooler and buncher for the TRIGA-SPEC experiment

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A linear Paul trap for cooling of ion beams, the former cooler for emittance elimination radiofrequency quadrupole (RFQ) at MISTRAL/ISOLDE, has been installed and commissioned at the TRIGA-SPEC experiment located at the research reactor TRIGA Mainz. It is connected to a hot-surface-ionization ion source and a subsequent mass separator for ionization and pre-separation of neutron-rich fission products as delivered from the reactor. The capability of accumulating and bunching ion beams has been implemented to provide low-emittance ion pulses of 250 ns width containing up to 106 ions. A technical description of the upgraded RFQ as well as its characterization with stable ions is presented. Its installation allows delivery of low-emittance ion bunches to the two branches of the TRIGA-SPEC experiment, namely TRIGA-TRAP and TRIGA-LASER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.behlke.de/pdf/ghts.pdf

  2. http://www.stahl-electronics.com/

References

  1. F. Herfurth, Nucl. Instr. Meth. B 204, 587 (2003)

    Article  ADS  Google Scholar 

  2. O. Gianfrancesco et al., Nucl. Instr. Meth. B 266, 4483 (2008)

    Article  ADS  Google Scholar 

  3. F. Herfurth et al., Nucl. Instr. Meth. A 469, 254 (2001)

    Article  ADS  Google Scholar 

  4. E. Traykov et al., Nucl. Instr. Meth. A 648, 1 (2011)

    Article  ADS  Google Scholar 

  5. A. Nieminen et al., Nucl. Instr. Meth. A 469, 244 (2001)

    Article  ADS  Google Scholar 

  6. J. Lavoie, P. Bricault, J. Lassen, M. Pearson, Hyperfine Interact. 174, 33 (2007)

    Article  ADS  Google Scholar 

  7. T. Brunner et al., Nucl. Instr. Meth. A 676, 32 (2012)

    Article  ADS  Google Scholar 

  8. W. Plaß et al., Nucl. Instr. Meth. B 266, 4560 (2008)

    Article  ADS  Google Scholar 

  9. E. Mané et al., Eur. Phys. J. A 42, 503 (2009)

    Article  ADS  Google Scholar 

  10. T. Sun et al., Eur. Phys. J. A 25, 61 (2005)

    Article  Google Scholar 

  11. G. Ban et al., Hyperfine Interact. 146, 259 (2003)

    Article  ADS  Google Scholar 

  12. M. Maier et al., Hyperfine Interact. 132, 521 (2001)

    Article  ADS  Google Scholar 

  13. J. Ketelaer et al., Nucl. Instr. Meth. A 594, 162 (2008)

    Article  ADS  Google Scholar 

  14. D. Lunney et al., Nucl. Instr. Meth. A 598, 379 (2009)

    Article  ADS  Google Scholar 

  15. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  16. P. Dawson, Quadrupole mass spectrometry and its applications. (Elsevier Scientific Pub Co, Amsterdam, 1976)

    Google Scholar 

  17. W. Paul, Rev. Mod. Phys. 62, 531 (1990)

    Article  ADS  Google Scholar 

  18. H. Dehmelt, Adv. Atom. Mol. Phys. 3, 53 (1967)

    Article  ADS  Google Scholar 

  19. M. Eibach et al., Nucl. Instr. Meth. A 613, 226 (2010)

    Article  ADS  Google Scholar 

  20. A. Mazumdar et al., Nucl. Instr. Meth. 174, 183 (1980)

    Article  Google Scholar 

  21. J. Ketelaer et al., Phys. Rev. C 84, 014311 (2011)

    Article  ADS  Google Scholar 

  22. C. Smorra et al., Phys. Rev. C 85, 027601 (2012)

    Article  ADS  Google Scholar 

  23. M. König et al., Int. J. Mass Spectrom. Ion Process 142, 95 (1995)

    Article  ADS  Google Scholar 

  24. K. Blaum, Y. Novikov, G. Werth, Cont. Phys. 51, 149 (2010)

    Article  ADS  Google Scholar 

  25. M. Smith et al., Hyperfine Interact. 173, 171 (2006)

    Article  ADS  Google Scholar 

  26. S. Kaufman, Opt. Commun. 17, 309 (1976)

    Article  ADS  Google Scholar 

  27. B. Cheal, K. Flanagan, J. Phys. G Nucl. Part. Phys. 37, 113101 (2010)

    Article  ADS  Google Scholar 

  28. K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. 2013, 014017 (2013)

    Article  Google Scholar 

  29. D. Eastham et al., J. Phys. G Nucl. Phys. 12, L205 (1986)

    Article  ADS  Google Scholar 

  30. A. Nieminen et al., Phys. Rev. Lett. 88, 094801 (2002)

    Article  ADS  Google Scholar 

  31. A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012)

    Article  ADS  Google Scholar 

  32. D. Lunney, R. Moore, Int. J. Mass Spectrom. 190, 153 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. D. Lunney for the transfer of COLETTE to Mainz and sharing his expertise in the field of Paul traps. M. E. acknowledges support by the BMBF under contract 05P09 UMFN5, N. F. is a recipient of the fellowship through GRK Symmetry Breaking (DFG/GRK 1581), and S. N. acknowledges support by the Alliance Program of the Helmholtz Association (HA216/EMMI). This work has been supported by the Max Planck Society, the BMBF under contract 05P12 UMFN8, and the PRISMA Cluster of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Beyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, T., Blaum, K., Block, M. et al. An RFQ cooler and buncher for the TRIGA-SPEC experiment. Appl. Phys. B 114, 129–136 (2014). https://doi.org/10.1007/s00340-013-5719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5719-4

Keywords

Navigation