Skip to main content
Log in

Characterisation of the potential of frequency modulation and optical feedback locking for cavity-enhanced absorption spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A combination of optical feedback self-locking of a continuous-wave distributed feedback diode laser to a V-shaped high finesse cavity, laser phase modulation at a frequency equal to the free spectral range of the V-cavity and detection of the transmitted laser beam at this high modulation frequency is described for the possible application in cavity-enhanced absorption spectroscopy. In order to estimate the noise level of an absorbance baseline, the triplet of frequency modulated light, i.e. the central laser frequency and the two sidebands, were transmitted through both the V-cavity in open air and a 1.5-cm long optical cell placed behind the cavity output mirror and filled with acetylene (C2H2) at low pressure. The performance of the setup was evaluated from the measured relative intensity noise on the cavity output (normalised by the bandwidth) and the frequency modulation absorption signals induced by C2H2 absorption in the 1.5-cm cell. From these data, we estimate that the noise-equivalent absorption sensitivity of 2.1 × 10−11 cm−1 Hz−1/2—by a factor of 11.7 above the shot-noise limit—can be achieved for C2H2 absorption spectra extracted from the heterodyne beat signals recorded at the transmission maxima intensity peaks of the successive TEM00 resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Ye, L.-S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15, 6 (1998)

    Article  ADS  Google Scholar 

  2. R.W.P. Drever, J.L. Hall, F.V. Kowalski et al., Appl. Phys. B 31, 97 (1983)

    Article  ADS  Google Scholar 

  3. R.G. DeVoe, R.G. Brewer, Phys. Rev. A 30, 2877 (1984)

    Article  ADS  Google Scholar 

  4. A. Foltynowicz, F.M. Schmidt, W. Ma, O. Axner, Appl. Phys. B 92, 313 (2008)

    Article  ADS  Google Scholar 

  5. J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B 80, 1027 (2005)

    Article  ADS  Google Scholar 

  6. G. Maisons, P. Gorrotxategi Carbajo, M. Carras, D. Romanini, Opt. Lett. 35, 3607 (2010)

    Article  ADS  Google Scholar 

  7. D. Hamilton, A.J. Orr-Ewing, Appl. Phys. B 102, 879 (2011)

    Article  ADS  Google Scholar 

  8. J.C. Habig, J. Nadolny, J. Meinen, H. Saathoff, T. Leisner, Appl. Phys. B 106, 491 (2012)

    Article  ADS  Google Scholar 

  9. V.L. Kasyutich, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, R.P. Wayne, Appl. Phys. B 75, 755 (2002)

    Article  ADS  Google Scholar 

  10. Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, F.K. Tittel, Appl. Opt. 43, 2257 (2004)

    Article  ADS  Google Scholar 

  11. W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, H. Cha, Appl. Phys. B 86, 353 (2007)

    Article  ADS  Google Scholar 

  12. G. Berden, R. Engeln, Richard (Eds.), Cavity Ring-Down Spectroscopy: Techniques and Applications, (Wiley, New York, 2009)

  13. R. Lang, K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980)

    Article  ADS  Google Scholar 

  14. V.L. Kasyutich, P.A. Martin, Opt. Comm. 284, 5723 (2011)

    Article  ADS  Google Scholar 

  15. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966)

    Article  ADS  Google Scholar 

  16. A.G. Fox, Optical maser mode selector. US patent, US3504299 (1970)

  17. P.W. Smith, IEEE J. Qunatum Electron. 1, 343 (1965)

    Article  ADS  Google Scholar 

  18. V.L. Kasyutich, P.A. Martin, R.J. Holdsworth, Meas. Sci. Technol. 17, 923 (2006)

    Article  ADS  Google Scholar 

  19. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J.V. Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Trans. 96, 139 (2005)

    Article  ADS  Google Scholar 

  20. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. 18, 582 (1982)

    Article  ADS  Google Scholar 

  21. W. Lenth, Opt. Lett. 8, 575 (1983)

    Article  ADS  Google Scholar 

  22. P. Werle, Spectrochim. Acta A 54, 197 (1998)

    Article  ADS  Google Scholar 

  23. G. Hancock, V.L. Kasyutich, G.A.D. Ritchie, Opt. Lett. 27, 763 (2002)

    Article  ADS  Google Scholar 

  24. F. Favre, D. Le Guen, IEEE J. Quantum Electron. 21, 1937 (1985)

    Article  ADS  Google Scholar 

  25. Ph. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989)

    Article  ADS  Google Scholar 

  26. P. Besnard, B. Meziane, G.M. Stéphan, IEEE J. Quantum Electron. 29, 1271 (1993)

    Article  ADS  Google Scholar 

  27. C.H. Henry, IEEE J. Quant. Electron. 18, 259 (1982)

    Article  ADS  Google Scholar 

  28. G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz, Appl. Phys. B 32, 145 (1983)

    Article  ADS  Google Scholar 

  29. S.W. North, X.S. Zheng, R. Fei, G.E. Hall, J. Chem. Phys. 104, 2129 (1996)

    Article  ADS  Google Scholar 

  30. E.D. Black, Am. J. Phys. 69, 79 (2001)

    Article  ADS  Google Scholar 

  31. W. Lenth, IEEE J. Quant. Electron. 20, 1045 (1984)

    Article  ADS  Google Scholar 

  32. J.F. Kielkopf, J. Opt. Soc. Am. 63, 987 (1973)

    Article  ADS  Google Scholar 

  33. E.R.T. Kerstel, R.Q. Iannone, M. Chenevier, S. Kassi, H.-J. Host, D. Romanini, Appl. Phys. B 85, 397 (2006)

    Article  ADS  Google Scholar 

  34. V.L. Kasyutich, A. McMahon, T. Barnhart, P.A. Martin, Appl. Phys B 93, 701 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research was supported by the European Commission within a Marie-Curie experienced researcher Intra-European Fellowship Award to V. Kasyutich (Kasiutsich). We also acknowledge the support by ETH Zurich and are very grateful to K.M.C. Hans, J. Kottmann, J.M. Rey and M. Gianella for their help and support during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus W. Sigrist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasyutich, V.L., Sigrist, M.W. Characterisation of the potential of frequency modulation and optical feedback locking for cavity-enhanced absorption spectroscopy. Appl. Phys. B 111, 341–349 (2013). https://doi.org/10.1007/s00340-013-5338-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5338-0

Keywords

Navigation