Skip to main content
Log in

Spatially-resolved potential measurement with ion crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a method to measure potentials over an extended region using one-dimensional ion crystals in a radio frequency (RF) ion trap. The equilibrium spacings of the ions within the crystal allow the calculation of the external forces acting at each point. From this the overall potential is computed, and even potentials due to specific trap features can be determined. The method can be used to probe potentials near proximal objects in real time, and can be generalised to higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Army Research Office (USA): ARDA quantum information science and technology roadmap (2004) http://qist.lanl.gov/qcomp_map.shtml,

  2. H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  3. M.W. Forbes, M. Sharifi, T. Croley, Z. Lausevic, R.E. March, J. Mass Spectrom. 34, 1219 (1999)

    Article  Google Scholar 

  4. B. Brkić, S. Taylor, J.F. Ralph, N. France, Phys. Rev. A 73, 012326 (2006)

    Article  ADS  Google Scholar 

  5. J. Home, A.M. Steane, Quantum Inf. Comput. 6, 289 (2006)

    MATH  Google Scholar 

  6. J.P. Home, D. Hanneke, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Science 325, 1227 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. W.K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslauriers, C. Monroe, Appl. Phys. Lett. 88, 034101 (2006)

    Article  ADS  Google Scholar 

  8. F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, W. Hänsel, New J. Phys. 11, 103008 (2009)

    Article  ADS  Google Scholar 

  9. M. Harlander, R. Lechner, M. Brownnutt, R. Blatt, W. Hänsel, Nature 471, 200 (2011)

    Article  ADS  Google Scholar 

  10. P. Schindler, J.T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, R. Blatt, Science 332, 1059 (2011)

    Article  ADS  Google Scholar 

  11. N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, St. Schulz, F. Schmidt-Kaler, H. Häffner, New J. Phys. 13, 013032 (2011)

    Article  ADS  Google Scholar 

  12. D.T.C. Allcock, L. Guidoni, T.P. Harty, C.J. Ballance, M.G. Blain, A.M. Steane, D.M. Lucas, 1110.1486 [quant-ph] (2011)

  13. M. Harlander, M. Brownnutt, W. Hänsel, R. Blatt, New J. Phys. 12, 093035 (2010)

    Article  ADS  Google Scholar 

  14. S.X. Wang, G.H. Low, N.S. Lachenmyer, Y. Ge, P.F. Herskind, I.L. Chuang, 1108.0092 [quant-ph] (2011)

  15. D.T.C. Allcock, T.P. Harty, H.A. Janacek, N.M. Linke, C.J. Ballance, A.M. Steane, D.M. Lucas, R.L. Jarecki Jr., S.D. Habermehl, M.G. Blain, D. Stick, D.L. Moehring, 1105.4864 [quant-ph] (2011)

  16. L. Deslauriers, P.C. Haljan, P.J. Lee, K.-A. Brickman, B.B. Blinov, M.J. Madsen, C. Monroe, Phys. Rev. A 70, 043408 (2004)

    Article  ADS  Google Scholar 

  17. M.J. Biercuk, H. Uys, J.W. Britton, A.P. VanDevender, J.J. Bollinger, Nat. Nanotechnol. 5, 646 (2010)

    Article  ADS  Google Scholar 

  18. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998)

    Article  ADS  Google Scholar 

  19. J.F. Eble, S. Ulm, P. Zahariev, F. Schmidt-Kaler, K. Singer, J. Opt. Soc. Am. B 27, A99 (2010)

    Article  Google Scholar 

  20. G. Huber, F. Ziesel, U. Poschinger, K. Singer, F. Schmidt-Kaler, Appl. Phys. B 100, 725 (2010)

    Article  ADS  Google Scholar 

  21. R. Maiwald, D. Leibfried, J. Britton, J.C. Bergquist, G. Leuchs, D.J. Wineland, Nat. Phys. 5, 551 (2009)

    Article  Google Scholar 

  22. S. Schulz, U. Poschinger, K. Singer, F. Schmidt-Kaler, Fortschr. Phys. 54, 648 (2006)

    Article  Google Scholar 

  23. M. Block, A. Drakoudis, H. Leuthner, P. Seibert, G. Werth, J. Phys. B 33, L375 (2000)

    Article  ADS  Google Scholar 

  24. I.M. Buluta, S. Hasegawa, J. Phys. B 42, 154004 (2009)

    ADS  Google Scholar 

  25. L. Hornekær, M. Drewsen, Phys. Rev. A 66, 013412 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge that the ion trap used is courtesy of the group of I.L. Chuang, MIT. We also acknowledge support from the Austrian Science Fund (FWF), the EU network SCALA, the EU STREP project MICROTRAP and the Institut für Quanteninformation GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brownnutt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brownnutt, M., Harlander, M., Hänsel, W. et al. Spatially-resolved potential measurement with ion crystals. Appl. Phys. B 107, 1125–1130 (2012). https://doi.org/10.1007/s00340-012-5032-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5032-7

Keywords

Navigation