Skip to main content
Log in

Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Trapping of 10-nm-sized single fluorescent bio-molecules in solution has been achieved using high-speed position sensing and electrokinetic feedback forces in the Anti-Brownian ELectrokinetic (ABEL) trap. The high diffusion coefficient of small objects in solution requires very fast, real-time sensing of position, and this has been previously achieved using a simple rotating beam, but improved strategies are needed for the smallest objects, such as single nanometer-sized fluorescent molecules. At the same time, single molecules are limited in photon emission rate and total number of photons, so each emitted photon must be used as efficiently as possible. We describe a new controller design for the ABEL trap which features fast, knight’s tour scanning of an excitation beam on a 2D square lattice and a Kalman filter-based estimator for optimal position sensing. This strategy leads directly to a maximum-likelihood-based method to extract the diffusion coefficient of the object held in the trap. The effectiveness of the algorithms are demonstrated and compared to the simple rotating beam design through Monte Carlo simulations. Our new approach yields tighter trapping and a much improved ability to extract diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Cang, C.S. Xu, H. Yang, Chem. Phys. Lett. 457, 285 (2008)

    Article  ADS  Google Scholar 

  2. K. McHale, A.J. Berglund, H. Mabuchi, Nano Lett. 7(11), 3535 (2007)

    Article  ADS  Google Scholar 

  3. H. Cang, C.S. Xu, D. Montiel, H. Yang, Opt. Lett 32(18), 2729 (2007)

    Article  ADS  Google Scholar 

  4. A.E. Cohen, W.E. Moerner, Appl. Phys. Lett. 86, 093109 (2005)

    Article  ADS  Google Scholar 

  5. A.E. Cohen, W.E. Moerner, Proc. Natl. Acad. Sci. USA 103(12), 4362 (2006)

    Article  ADS  Google Scholar 

  6. A.E. Cohen, W.E. Moerner, Opt. Exp. 16(10), 6941 (2008)

    Article  ADS  Google Scholar 

  7. A.E. Cohen, W.E. Moerner, Proc. SPIE 5699, 296 (2005)

    Article  ADS  Google Scholar 

  8. Y. Jiang, Q. Wang, A.E. Cohen, N. Douglas, J. Frydman, W.E. Moerner, Proc. SPIE 7038(703807) (2008)

  9. J. Enderlein, Appl. Phys. B 71, 773 (2000)

    Article  ADS  Google Scholar 

  10. A.J. Berglund, H. Mabuchi, Appl. Phys. B 78, 653 (2004)

    Article  ADS  Google Scholar 

  11. A.J. Berglund, H. Mabuchi, Appl. Phys. B 83(1), 127 (2006)

    Article  ADS  Google Scholar 

  12. V. Levi, Q. Ruan, E. Gratton, Biophys. J. 88, 2919 (2005)

    Article  Google Scholar 

  13. S.B. Andersson, Appl. Phys. B 80, 809 (2005)

    Article  ADS  Google Scholar 

  14. H. Cang, C.M. Wong, C.S. Xu, A.H. Rizvi, H. Yang, Appl. Phys. Lett. 88, 223901 (2006)

    Article  ADS  Google Scholar 

  15. A.J. Berglund, K. McHale, H. Mabuchi, Opt. Exp. 15(12), 7752 (2007)

    Article  ADS  Google Scholar 

  16. D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches (Wiley, New York, 2006)

    Google Scholar 

  17. D. Magde, W.W. Webb, E.L. Elson, Biopolymers 17(2), 361 (1978)

    Article  Google Scholar 

  18. J. Stockton, M. Armen, H. Mabuchi, J. Opt. Soc. Am. B 19(12), 3019 (2002)

    Article  ADS  Google Scholar 

  19. D. Vučinić, T.J. Sejnowski, PLoS ONE 2(8), e699 (2007)

    Article  ADS  Google Scholar 

  20. M.T. Tyn, T.W. Gusek, Biotech. Bioeng. 35(4), 327 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. Moerner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Moerner, W.E. Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap. Appl. Phys. B 99, 23–30 (2010). https://doi.org/10.1007/s00340-009-3843-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3843-y

Keywords

Navigation