Skip to main content
Log in

Analysis of 205-nm photolytic production of atomic hydrogen in methane flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate the 205-nm photolytic production of atomic hydrogen in methane flames. This process represents a significant interference in two-photon, laser induced-fluorescence (TP-LIF) detection of atomic hydrogen in flames. Relative TP-LIF profiles of the photolytically produced H atoms were measured using a pump-probe technique in atmospheric-pressure, premixed CH4/O2/N2 flames. A high-fluence, non-resonant, nanosecond pump laser created H atoms by photodissociating flame constituents, and a copropagating, non-perturbing picosecond laser probed the photolytically produced Hatoms via TP-LIF. Spatial profiles of photolytically produced H atoms indicate that both intermediate and product species contribute to the interference in all flames. Excellent agreement between simulated and measured interference signals is observed in the product region of the flames. Vibrationally excited H2O is the dominant source of interference in the product region, but an additional contribution is attributed to vibrationally excited OH radicals. In the flame-front region, CH3 is the dominant precursor, and photodissociation of C2H2 becomes increasingly important in rich flames. Mechanisms for sequential photodissociation of CH3 and C2H2 are presented, indicating that complete dissociation at 205 nm of both precursors is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Lucht, J.T. Salmon, G.B. King, D.W. Sweeney, N.M. Laurendeau, Opt. Lett. 8, 365 (1983)

    Article  ADS  Google Scholar 

  2. J.T. Salmon, N.M. Laurendeau, Appl. Opt. 26, 2881 (1987)

    Article  ADS  Google Scholar 

  3. J.T. Salmon, N.M. Laurendeau, Combust. Flame 74, 221 (1988)

    Article  Google Scholar 

  4. J.E.M. Goldsmith, Proc. Combust. Inst. 22, 1403 (1988)

    Google Scholar 

  5. M. Aldén, A.L. Schawlow, S. Svanberg, W. Wendt, P.L. Zhang, Opt. Lett. 9, 211 (1984)

    Article  ADS  Google Scholar 

  6. K.E. Bertagnolli, R.P. Lucht, M.N. Bui-Pham, J. Appl. Phys. 83, 2315 (1998)

    Article  ADS  Google Scholar 

  7. A. Brockhinke, A. Bülter, J.C. Rolon, K. Kohse-Höinghaus, Appl. Phys. B 72, 491 (2001)

    ADS  Google Scholar 

  8. J.E.M. Goldsmith, Opt. Lett. 10, 116 (1985)

    Article  ADS  Google Scholar 

  9. S.J. Harris, A.M. Weiner, R.J. Blint, J.E.M. Goldsmith, Proc. Combust. Inst. 21, 1033 (1986)

    Google Scholar 

  10. J.E.M. Goldsmith, N.M. Laurendeau, Opt. Lett. 15, 576 (1990)

    Article  ADS  Google Scholar 

  11. N. Georgiev, M. Aldén, Appl. Spectrosc. 51, 1229 (1997)

    Article  ADS  Google Scholar 

  12. W.D. Kulatilaka, J.H. Frank, T.B. Settersten, Proc. Combust. Inst. 32, 955 (2009)

    Article  Google Scholar 

  13. J.E.M. Goldsmith, Opt. Lett. 11, 416 (1986)

    Article  ADS  Google Scholar 

  14. P. Desgroux, L. Gasnot, B. Crunelle, J.F. Pauwels, Proc. Combust. Inst. 26, 967 (1996)

    Google Scholar 

  15. L. Gasnot, P. Desgroux, J.F. Pauwels, L.R. Sochet, Appl. Phys. B 65, 639 (1997)

    Article  Google Scholar 

  16. D.Č. Radenović, A.J.A. van Roij, S.-M. Wu, J.J. ter Meulen, D.H. Parker, M.P.J. van der Loo, L.M.C. Janssen, G.C. Groenenboom, Mol. Phys. 106, 557 (2008)

    Article  ADS  Google Scholar 

  17. B.L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, T.A. Miller, Chem. Phys. 196, 371 (1995)

    Article  Google Scholar 

  18. G. Baravian, G. Sultan, J. Amorim, C. Hayaud, J. Appl. Phys. 82, 3615 (1997)

    Article  ADS  Google Scholar 

  19. R. Quandt, X.B. Wang, Z.Y. Min, H.L. Kim, R. Bersohn, J. Phys. Chem. A 102, 6063 (1998)

    Article  Google Scholar 

  20. W.D. Kulatilaka, B.D. Patterson, J.H. Frank, T.B. Settersten, Appl. Opt. 47, 4672 (2008)

    Article  ADS  Google Scholar 

  21. J.H. Frank, X. Chen, B.D. Patterson, T.B. Settersten, Appl. Opt. 43, 2588 (2004)

    Article  ADS  Google Scholar 

  22. P.P. Yaney, D.A.V. Kliner, P.E. Schrader, R.L. Farrow, Rev. Sci. Inst. 71, 1296 (2000)

    Article  ADS  Google Scholar 

  23. R.J. Kee, J. Grcar, M.D. Smooke, J.A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames. Tech. Rep. SAND85-8240, Sandia National Laboratories (1985)

  24. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, available from: http://www.me.berkeley.edu/gri_mech/ (2000)

  25. N. Hansen, J.A. Miller, T. Kasper, K. Kohse-Höinghaus, P.R. Westmoreland, J. Wang, T.A. Cool, Proc. Combust. Inst. 32, 623 (2009)

    Article  Google Scholar 

  26. G.H. Dieke, Phys. Rev. 50, 797 (1936)

    Article  ADS  Google Scholar 

  27. G. Herzberg, L.L. Howe, Can. J. Phys. 37, 636 (1959)

    ADS  Google Scholar 

  28. V. Engel, V. Staemmler, R.L. Vander Wal, F.F. Crim, R.J. Sension, B. Hudson, P. Andresen, S. Hennig, K. Weide, R. Schinke, J. Phys. Chem. 96, 3201 (1992)

    Article  Google Scholar 

  29. C. Schulz, J.B. Jeffries, D.F. Davidson, J.D. Koch, J. Wolfrum, R.K. Hanson, Proc. Combust. Inst. 29, 2735 (2002)

    Article  Google Scholar 

  30. G. Herzberg, Proc. R. Soc. Lond., Ser. A 262, 291 (1961)

    Article  ADS  Google Scholar 

  31. S.W. North, D.A. Blank, P.M. Chu, Y.T. Lee, J. Chem. Phys. 102, 792 (1995)

    Article  ADS  Google Scholar 

  32. A.B. Callear, M.P. Metcalfe, Chem. Phys. 14, 275 (1976)

    Article  ADS  Google Scholar 

  33. S.G. Westre, T.E. Gansberg, P.B. Kelly, L.D. Ziegler, J. Phys. Chem. 96, 3610 (1992)

    Article  Google Scholar 

  34. S.G. Westre, P.B. Kelly, Y.P. Zhang, L.D. Ziegler, J. Chem. Phys. 94, 270 (1991)

    Article  ADS  Google Scholar 

  35. T.B. Settersten, R.L. Farrow, J.A. Gray, Chem. Phys. Lett. 370, 204 (2003)

    Article  ADS  Google Scholar 

  36. H.T. Yu, A. Sevin, E. Kassab, E.M. Evleth, J. Chem. Phys. 80, 2049 (1984)

    Article  ADS  Google Scholar 

  37. S.H.S. Wilson, J.D. Howe, K.N. Rosser, M.N.R. Ashfold, R.N. Dixon, Chem. Phys. Lett. 227, 456 (1994)

    Article  ADS  Google Scholar 

  38. G. Wu, B. Jiang, Q. Ran, J. Zhang, S.A. Harich, X. Yang, J. Chem. Phys. 120, 2193 (2004)

    Article  ADS  Google Scholar 

  39. M.A. Oehlschlaeger, D.F. Davidson, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 92, 393 (2005)

    Article  ADS  Google Scholar 

  40. K. Glänzer, M. Quack, J. Troe, Proc. Combust. Inst. 16, 949 (1977)

    Google Scholar 

  41. U. Bley, F. Temps, J. Chem. Phys. 98, 1058 (1993)

    Article  ADS  Google Scholar 

  42. F. Hayes, W.D. Lawrance, W.S. Staker, K.D. King, J. Phys. Chem. 100, 11314 (1996)

    Article  Google Scholar 

  43. M.A. Blitz, K.W. McKee, M.J. Pilling, P.W. Seakins, Chem. Phys. Lett. 372, 295 (2003)

    Article  ADS  Google Scholar 

  44. A.V. Komissarov, A. Lin, T.J. Sears, G.E. Hall, J. Chem. Phys. 125, 084308 (2006)

    Article  ADS  Google Scholar 

  45. R.A. Beärda, M.C. van Hemert, E.F. van Dishoeck, J. Chem. Phys. 97, 8240 (1992)

    Article  ADS  Google Scholar 

  46. B. Bohn, F. Stuhl, J. Chem. Phys. 102, 8842 (1995)

    Article  ADS  Google Scholar 

  47. G.-J. Kroes, E.F. van Dishoeck, R.A. Beärda, M.C. van Hemert, J. Chem. Phys. 99, 228 (1993)

    Article  ADS  Google Scholar 

  48. E.F. van Dishoeck, J. Chem. Phys. 86, 196 (1987)

    Article  ADS  Google Scholar 

  49. C.K. Ingold, G.W. King, J. Chem. Soc. 2725–2744 (1953)

  50. K.K. Innes, J. Chem. Phys. 22, 863 (1954)

    Article  ADS  Google Scholar 

  51. D.H. Mordaunt, M.N.R. Ashfold, J. Chem. Phys. 101, 2630 (1994)

    Article  ADS  Google Scholar 

  52. D.H. Mordaunt, M.N.R. Ashfold, R.N. Dixon, P. Löffler, L. Schnieder, K.H. Welge, J. Chem. Phys. 108, 519 (1998)

    Article  ADS  Google Scholar 

  53. D.P. Baldwin, M.A. Buntine, D.W. Chandler, J. Chem. Phys. 93, 6578 (1990)

    Article  ADS  Google Scholar 

  54. S. Satyapal, R. Bersohn, J. Phys. Chem. 95, 8004 (1991)

    Article  Google Scholar 

  55. K. Seki, H. Okabe, J. Phys. Chem. 97, 5284 (1993)

    Article  Google Scholar 

  56. N. Hashimoto, N. Yonekura, T. Suzuki, Chem. Phys. Lett. 264, 545 (1997)

    Article  ADS  Google Scholar 

  57. F.Z. Chen, D.L. Judge, C.Y.R. Wu, J. Caldwell, H.P. White, R. Wagener, J. Geophys. Res. 96, 17519 (1991)

    Article  ADS  Google Scholar 

  58. J. Vattulainen, L. Wallenius, J. Stenberg, R. Hernberg, V. Linna, Appl. Spectrosc. 51, 1311 (1997)

    Article  ADS  Google Scholar 

  59. D.L. Osborn, private communication (2008)

  60. A.M. Wodtke, Y.T. Lee, J. Phys. Chem. 89, 4744 (1985)

    Article  Google Scholar 

  61. B.A. Balko, J. Zhang, Y.T. Lee, J. Chem. Phys. 94, 7958 (1991)

    Article  ADS  Google Scholar 

  62. A.M. Mebel, M. Hayashi, W.M. Jackson, J. Wrobel, M. Green, D. Xu, S.H. Lin, J. Chem. Phys. 114, 9821 (2001)

    Article  ADS  Google Scholar 

  63. A. Läuter, K.S. Lee, K.H. Jung, R.K. Vatsa, J.P. Mittal, H.-R. Volpp, Chem. Phys. Lett. 358, 314 (2002)

    Article  Google Scholar 

  64. G.S. Tyndall, R.A. Cox, C. Granier, R. Lesclaux, G.K. Moortgat, M.J. Pilling, A.R. Ravishankara, T.J. Wallington, J. Geophys. Res. 106, 12157 (2001)

    Article  ADS  Google Scholar 

  65. S.R. Langhoff, R.L. Jaffe, J. Chem. Phys. 71, 1475 (1979)

    Article  ADS  Google Scholar 

  66. G.J. Vazquez, S.D. Peyerimhoff, R.J. Buenker, Chem. Phys. 99, 239 (1985)

    Article  Google Scholar 

  67. B.A. DeGraff, J.G. Calvert, J. Am. Chem. Soc. 89, 2247 (1967)

    Article  Google Scholar 

  68. R.D. McQuigg, J.G. Calvert, J. Am. Chem. Soc. 91, 1590 (1969)

    Article  Google Scholar 

  69. D.C. Moule, A.D. Walsh, Chem. Rev. 75, 67 (1975)

    Article  Google Scholar 

  70. R. Meller, G.K. Moortgat, J. Geophys. Res. 105, 7089 (2000)

    Article  ADS  Google Scholar 

  71. G. Cooper, J.E. Anderson, C.E. Brion, Chem. Phys. 209, 61 (1996)

    Article  Google Scholar 

  72. H. Shiromaru, Y. Achiba, K. Kimura, Y.T. Lee, J. Phys. Chem. 91, 17 (1987)

    Article  Google Scholar 

  73. M.E. Zelikoff, K. Watanabe, J. Opt. Soc. Am. 43, 756 (1953)

    Article  ADS  Google Scholar 

  74. V.L. Orkin, R.E. Huie, M.J. Kurylo, J. Phys. Chem. 101, 9118 (1997)

    Google Scholar 

  75. A.Y.T. Lee, Y.L. Yung, B.-M. Cheng, M. Bahou, C.-Y. Chung, Y.-P. Lee, Astrophys. J. 551, L93 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Settersten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulatilaka, W.D., Frank, J.H., Patterson, B.D. et al. Analysis of 205-nm photolytic production of atomic hydrogen in methane flames. Appl. Phys. B 97, 227–242 (2009). https://doi.org/10.1007/s00340-009-3474-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3474-3

PACS

Navigation