Skip to main content
Log in

Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor

Applied Physics B Aims and scope Submit manuscript

Abstract

Quartz-enhanced photoacoustic spectroscopy (QEPAS) sensors are based on a recent approach to photoacoustic detection which employs a quartz tuning fork as an acoustic transducer. These sensors enable detection of trace gases for air quality monitoring, industrial process control, and medical diagnostics. To detect a trace gas, modulated laser radiation is directed between the tines of a tuning fork. The optical energy absorbed by the gas results in a periodic thermal expansion which gives rise to a weak acoustic pressure wave. This pressure wave excites a resonant vibration of the tuning fork thereby generating an electrical signal via the piezoelectric effect. This paper describes a theoretical model of a QEPAS sensor. By deriving analytical solutions for the partial differential equations in the model, we obtain a formula for the piezoelectric current in terms of the optical, mechanical, and electrical parameters of the system. We use the model to calculate the optimal position of the laser beam with respect to the tuning fork and the phase of the piezoelectric current. We also show that a QEPAS transducer with a particular 32.8 kHz tuning fork is 2–3 times as sensitive as one with a 4.25 kHz tuning fork. These simulation results closely match experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A.A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F.K. Tittel, R.F. Curl, Appl. Phys. B 90(2), 165 (2007)

    Article  ADS  Google Scholar 

  2. M.R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, F.K. Tittel, J. Breath Res. 1, 014001–014013 (2007)

    Article  ADS  Google Scholar 

  3. T.H. Risby, S.F. Solga, Appl. Phys. B 85(2–3), 421 (2006)

    Article  ADS  Google Scholar 

  4. A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27(21), 1902 (2002)

    Article  ADS  Google Scholar 

  5. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Rev. Sci. Instrum. 76(4), 0431051 (2005)

    Article  Google Scholar 

  6. R. Lewicki, G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 87(1), 157 (2007)

    Article  ADS  Google Scholar 

  7. S.H. Yönak, D.R. Dowling, J. Acoust. Soc. Am. 114(6), 3167 (2003)

    Article  ADS  Google Scholar 

  8. A. Miklos, Z. Bozoki, Y. Jiang, M. Feher, Appl. Phys. B 58, 483 (1994)

    Article  ADS  Google Scholar 

  9. A. Miklos, P. Hess, Z. Bozoki, Rev. Sci. Instrum. 72(4), 1937 (2001)

    Article  ADS  Google Scholar 

  10. K. Karraï, R.D. Grober, Ultramicroscopy 61(1), 197 (1995)

    Article  Google Scholar 

  11. K. Karraï, R.D. Grober, Appl. Phys. Lett. 66(14), 1842 (1995)

    Article  ADS  Google Scholar 

  12. R.D. Grober, J. Acimovic, J. Schuck, D. Hessman, P.J. Kindlemann, J. Hespanha, S.A. Morse, K. Karraï, I. Tiemann, S. Manus, Rev. Sci. Instrum. 71(7), 2776 (2000)

    Article  ADS  Google Scholar 

  13. M.D. Wojcik, M.C. Phillips, B.D. Cannon, M.S. Taubman, Appl. Phys. B 11(2–3), 307 (2006)

    Article  ADS  Google Scholar 

  14. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, Princeton, 1986)

    Google Scholar 

  15. M.A. Pinsky, Partial Differential Equations and Boundary Value Problems with Applications (McGraw-Hill, New York, 1991)

    Google Scholar 

  16. A. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1974)

    Google Scholar 

  17. D.V. Serebryakov, A.P. Cherkun, B.A. Loginov, V.S. Letokhov, Rev. Sci. Instrum. 73(4), 1795 (2002)

    Article  ADS  Google Scholar 

  18. C.R. Wylie, Advanced Engineering Mathematics (McGraw-Hill, New York, 1966)

    MATH  Google Scholar 

  19. A.P. French, Vibrations and Waves (Norton, New York, 1971)

    Google Scholar 

  20. M.E. Webber, D.S. Baer, R.K. Hanson, Appl. Opt. 40(12), 2031 (2001)

    Article  ADS  Google Scholar 

  21. G. Gorelik, Dokl. Akad. Nauk SSSR 54, 779 (1946) (in Russian)

    Google Scholar 

  22. F.E. Hovis, C.B. Moore, J. Chem. Phys. 69, 4947 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Petra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petra, N., Zweck, J., Kosterev, A.A. et al. Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor. Appl. Phys. B 94, 673–680 (2009). https://doi.org/10.1007/s00340-009-3379-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3379-1

PACS

Navigation