Skip to main content
Log in

The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance

Applied Physics B Aims and scope Submit manuscript

Abstract

A high-performance airborne water vapor differential absorption lidar has been developed during the past years. This system uses a four-wavelength/three-absorption line measurement scheme in the 935 nm H2O absorption band to cover the whole troposphere and lower stratosphere simultaneously. Additional high spectral resolution aerosol and depolarization channels allow precise aerosol characterization. This system is intended to demonstrate a future space-borne instrument. For the first time, it realizes an output power of up to 12 W at a high wall-plug efficiency using diode-pumped solid-state lasers and nonlinear conversion techniques. Special attention was given to a rugged optical layout. This paper describes the system layout and technical realization. Key performance parameters are given for the different subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. L. Bengtsson, K.I. Hodges, S. Hagemann, Tellus A 56, 202–217 (2004)

    Article  ADS  Google Scholar 

  2. É. Gérard, D.G.H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, P. Di Girolamo, BAMS 85, 237–251 (2004)

    Article  ADS  Google Scholar 

  3. R.M. Schotland, J. Appl. Meteor. 13, 71–77 (1974)

    Article  Google Scholar 

  4. J. Bösenberg, Appl. Opt. 37, 3845–3860 (1998)

    Article  ADS  Google Scholar 

  5. W.B. Grant, Opt. Eng. 30, 40–48 (1991)

    Article  ADS  Google Scholar 

  6. E.V. Browell, S. Ismail, W.B. Grant, Appl. Phys. B 67, 399–410 (1998)

    Article  ADS  Google Scholar 

  7. S. Ismail, E. Browell, Appl. Opt. 28, 3603–3615 (1998)

    Article  ADS  Google Scholar 

  8. L.S. Rothman , J. Quantum Spectrosc. Radiat. Transf. 96, 139–204 (2005)

    Article  ADS  Google Scholar 

  9. ESA, Report for Mission Selection: WALES—Water Vapour Lidar Experiment in Space. ESA SP 1279 (3), ISBN 92-9092-962-6 (2004)

  10. V. Wulfmeyer, H. Bauer, P. Di Girolamo, C. Serio, Remote Sens. Environ. 95, 211–230 (2005)

    Article  Google Scholar 

  11. P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, G. Ehret, Remote Sens. Environ. 112, 1552–1568 (2008)

    Article  Google Scholar 

  12. V. Wulfmeyer, A. Behrendt, H.-S. Bauer, C. Kottmeier, U. Corsmeier, A. Blyth, G. Craig, U. Schumann, M. Hagen, S. Crewell, P. Di Girolamo, C. Flamant, M. Miller, A. Montani, S. Mobbs, E. Richard, M.W. Rotach, M. Arpagaus, H. Russchenberg, P. Schlüssel, M. König, V. Gärtner, R. Steinacker, M. Dorninger, D.D. Turner, T. Weckwerth, A. Hense, C. Simmer, BAMS 89, 1477–1468 (2008)

    Article  ADS  Google Scholar 

  13. M. Esselborn, M. Wirth, A. Fix, P. Mahnke, G. Ehret, in Proceedings of the 24th International Laser Radar Conference, Boulder, CO (USA), 2008, pp. 357–360. ISBN 987-0-615-21489-4

  14. A. Fix, M. Wirth, M. Esselborn, A. Amediek, P. Mahnke, S. Rahm, R. Simmet, A. Schäfler, C. Kiemle, A. Dörnbrack, G. Ehret, in Proceedings of the 24th International Laser Radar Conference, Boulder, CO (USA), 2008, pp. 1005–1009. ISBN 987-0-615-21489-4

  15. G. Ehret, K.P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, J. Geophys. Res. 104, 31351–31359 (1999)

    Article  ADS  Google Scholar 

  16. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, Appl. Phys. B 75, 165–172 (2002)

    Article  ADS  Google Scholar 

  17. I. Freitag, A. Tünnermann, H. Welling, Opt. Lett. 22, 706–708 (1997)

    Article  ADS  Google Scholar 

  18. M. Esselborn, M. Wirth, A. Fix, M. Tesche, G. Ehret, Appl. Opt. 47, 346–358 (2008)

    Article  ADS  Google Scholar 

  19. S. Gerstenkorn, P. Luc, Atlas du Spectre D’Asorption de la Molecule D’Iode, Atlas III (CNRS, Paris, 1978)

    Google Scholar 

  20. M.S. Fee, K. Danzmann, S. Chu, Phys. Rev. A 45, 4911–4924 (1992)

    Article  ADS  Google Scholar 

  21. S. Gangopadhyay, N. Melikechi, E.E. Eyler, J. Opt. Soc. Am. B 11, 231–241 (1994)

    Article  ADS  Google Scholar 

  22. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, R. Treichel, Appl. Phys. B 87, 437–444 (2007)

    Article  ADS  Google Scholar 

  23. R. Fluck, M.R. Hermann, L.A. Hackel, Appl. Phys. B 70, 491–498 (2000)

    Article  ADS  Google Scholar 

  24. Lasers and laser-related equipment—test methods for laser beam parameters—beam widths, divergence angle and beam propagation factor. ISO11146, International Organization for Standardization (1999)

  25. M. Ostermeyer, G. Klemz, P. Kubina, R. Menzel, Appl. Opt. 41, 7573–7582 (2002)

    Article  ADS  Google Scholar 

  26. M. Ostermeyer, P. Knappe, R. Menzel, V. Wulfmeyer, Appl. Opt. 44, 582–590 (2005)

    Article  ADS  Google Scholar 

  27. B. Boulanger, M.M. Fejer, R. Blachman, P.F. Bordui, Appl. Phys. Lett. 65, 2401–2403 (1994)

    Article  ADS  Google Scholar 

  28. P. Mahnke, H. Klingenberg, A. Fix, M. Wirth, Appl. Phys. B 89, 1–7 (2007)

    Article  ADS  Google Scholar 

  29. G. Anstett, A. Borsutzky, R. Wallenstein, Appl. Phys. B 76, 541–545 (2003)

    Article  ADS  Google Scholar 

  30. G. Anstett, M. Nittmann, R. Wallenstein, Appl. Phys. B 79, 305–313 (2004)

    Google Scholar 

  31. A.V. Smith, M.S. Bowers, J. Opt. Soc. Am. B 18, 706–713 (2001)

    Article  ADS  Google Scholar 

  32. A.V. Smith, D.J. Armstrong, J. Opt. Soc. Am. B 19, 1801–1814 (2002)

    Article  ADS  Google Scholar 

  33. D.J. Armstrong, A.V. Smith, Opt. Lett. 31, 380–382 (2006)

    Article  ADS  Google Scholar 

  34. G. Arisholm, O. Nordseth, G. Rustad, Opt. Express 12, 4189–4197 (2004)

    Article  ADS  Google Scholar 

  35. C.J. Grund, R.M. Banta, J.L. George, J.N. Howell, M.J. Post, R.A. Richter, A.M. Weickmann, J. Ocean. Atmos. Technol. 18, 376–393 (2001)

    Article  ADS  Google Scholar 

  36. R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, J. Opt. Soc. Am. B 21, 1577–1585 (2004)

    Article  ADS  Google Scholar 

  37. R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, J. Opt. Soc. Am. B 21, 1586–1594 (2004)

    Article  ADS  Google Scholar 

  38. R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, Opt. Express 12, 5655–5660 (2004)

    Article  ADS  Google Scholar 

  39. R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, J. Opt. Soc. Am. B 24, 2601–2609 (2007)

    Article  ADS  Google Scholar 

  40. A. Fix, R. Wallenstein, J. Opt. Soc. Am. B 13, 2484–2497 (1996)

    Article  ADS  Google Scholar 

  41. G. Anstett, R. Wallenstein, Appl. Phys. B 79, 827–836 (2004)

    Article  ADS  Google Scholar 

  42. L.A. Rahn, Appl. Opt. 24, 940–942 (1985)

    Article  ADS  Google Scholar 

  43. S.W. Henderson, E.H. Yuen, E.S. Fry, Opt. Lett. 11, 715–718 (1986)

    Article  ADS  Google Scholar 

  44. V. Wulfmeyer, M. Randall, A. Brewer, R.M. Hardesty, Opt. Lett. 25, 1228–1230 (2000)

    Article  ADS  Google Scholar 

  45. M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, J.P. Reithmaier, Appl. Phys. Lett. 74, 483–485 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wirth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirth, M., Fix, A., Mahnke, P. et al. The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance. Appl. Phys. B 96, 201–213 (2009). https://doi.org/10.1007/s00340-009-3365-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3365-7

PACS

Navigation