Skip to main content
Log in

Tensile behavior and microstructural evolution of TiMoZrV HEAs: a molecular dynamics study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Crystallographic models of TiZrVMo HEAs were established here for six distinct grain sizes ranging from 7.4 to 23.5 nm. A consistent rise in tensile stress maxima is observed with diminishing grain size. Remarkably, the TiZrVMo composition demonstrates its optimal performance at a grain size of 12.4 nm. During tensile processes, TiZrVMo displays pronounced atomic plane slip and an increase in intra-grain dislocations, indicating significant plastic deformation. Conversely, TiZrV3Mo exhibits limited slip and localized stress, signifying a lower degree of plasticity. This research unveils the intricate interplay of grain boundary phenomena, dislocation behavior, and atomic plane slip, thereby shedding light on the mechanical properties of HEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data forming the basis of this study are available from the authors upon reasonable request.

References

  1. Z.M. Jiao, Z.H. Wang, R.F. Wu, J.W. Qiao, Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy. Appl. Phys. A 122, 794 (2016)

    Article  ADS  Google Scholar 

  2. M. Yang, L. Shao, J. Duan, X. Chen, B. Tang, Correlation between mechanical properties and valence electron concentration for NbTiZrM (M = Hf, Ta, W) refractory high entropy alloys: an ab initio study. Appl. Phys. A 127, 341 (2021)

    Article  ADS  CAS  Google Scholar 

  3. J. Xiong, D. Wang, Y. Cai, P. Zhao, Z. Luo, Effect of high-temperature heat treatment on microstructure and properties of FeMnCrNiCo+20 wt.%TiC high-entropy alloy coating. Appl. Phys. A 128, 267 (2022)

    Article  ADS  CAS  Google Scholar 

  4. J. Byggmästar, K. Nordlund, F. Djurabekova, Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials: defects and segregation. Phys. Rev. B 104, 104101 (2021)

    Article  ADS  Google Scholar 

  5. I. Toda-Caraballo, J.S. Wróbel, D. Nguyen-Manh, P. Pérez, P.E.J. Rivera-Díaz-del-Castillo, Simulation and modeling in high entropy alloys. JOM-US. 69, 2137–2149 (2017)

    Article  Google Scholar 

  6. C. Chen, Y. Guo, R. Gao, K. Guo, M. Chang, Y. Han et al., Influencing mechanism of trace elements on quasi-static ignition of TiZrHf-based high-entropy alloys. Mater. Sci. Tech. 38, 1230–1238 (2022)

    Article  CAS  Google Scholar 

  7. N.D. Stepanov, N.Y. Yurchenko, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater. Sci. Tech. 31, 1184–1193 (2015)

    Article  CAS  Google Scholar 

  8. D. Haoyan, L.J. Santodonato, T. Zhi, E. Takeshi, L.K. Peter, Local structures of high-entropy alloys (HEAs) on atomic scales: an overview. JOM-US. 67, 2321–2325 (2015)

    Article  Google Scholar 

  9. J.M. Sosa, J.K. Jensen, D.E. Huber, G.B. Viswanathan, M.A. Gibson, H.L. Fraser, Three-dimensional characterisation of the microstructure of an high entropy alloy using STEM/HAADF tomography. Mater. Sci. Tech. 31, 1250–1258 (2015)

    Article  CAS  Google Scholar 

  10. X. Zhou, S. He, J. Marian, Cross-kinks control screw dislocation strength in equiatomic bcc refractory alloys. Acta Mater. 211, 116875 (2021)

    Article  CAS  Google Scholar 

  11. S. Yin, Y. Zuo, A. Abu-Odeh, H. Zheng, X. Li, J. Ding et al., Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nat. Commun. 12, 4873 (2021)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  12. G. Potnis, D. Goswami, J. Das, Twinning mediated plasticity in high entropy CoCr1.3FeNi0.7MnNb (x = 0.3, 0.367, 0.4) ultrafine lamellar eutectic by tuning stacking fault energy. Scripta Mater. 227, 115271 (2023)

    Article  CAS  Google Scholar 

  13. D. Wu, S. Shuang, Y. Liang, X. Tian, G. Kang, X. Zhang, Interactions between screw dislocation and twin boundary in high-entropy alloy: a molecular dynamic study. Comp. Mater. Sci. 213, 111626 (2022)

    Article  CAS  Google Scholar 

  14. J. Liu, Molecular dynamic study of temperature dependence of mechanical properties and plastic inception of CoCrCuFeNi high-entropy alloy. Phys. Lett. a. 384, 126516 (2020)

    Article  CAS  Google Scholar 

  15. B. Mortazavi, M. Silani, E.V. Podryabinkin, T. Rabczuk, X. Zhuang, A.V. Shapeev, First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials. Adv. Mater. 33, 2102807 (2021)

    Article  CAS  Google Scholar 

  16. H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, T. Rabczuk, A computational library for multiscale modeling of material failure. Comput. Mech. 53, 1221–1237 (2014)

    Article  MathSciNet  Google Scholar 

  17. B. Chen, J. Sun, L. Zhuo, T. Yan, B. Sun, M. Zhan, An atomistic study of the newly-developed single-phase refractory high entropy alloy of TiZrVMo: defect accumulation and evolution under tensile deformation. Mater. Lett. 333, 133664 (2023)

    Article  CAS  Google Scholar 

  18. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier et al., LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022)

    Article  CAS  Google Scholar 

  19. P. Hirel, Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015)

    Article  ADS  CAS  Google Scholar 

  20. T. Zheng, J. Lv, Y. Wu, H. Wu, S. Liu, J. Tang et al., Effects of stacking fault energy on the deformation behavior of CoNiCrFeMn high-entropy alloys: a molecular dynamics study. Appl. Phys. Lett. 119, 201907 (2021)

    Article  ADS  CAS  Google Scholar 

  21. K. Chen, T. Wei, G. Li, M. Chen, Y. Chen, S. Chang et al., Mechanical properties and deformation mechanisms in CoCrFeMnNi high entropy alloys: a molecular dynamics study. Mater. Chem. Phys. 271, 124912 (2021)

    Article  CAS  Google Scholar 

  22. R. Liu, J. Tang, J. Jiang, X. Li, Y. Wei, Stacking fault induced hardening and grain size effect in nanocrystalline CoNiCrFeMn high-entropy alloy. Extreme Mech. Lett. 56, 101875 (2022)

    Article  Google Scholar 

  23. Z. Song, Y. Lin, P. Wang, Q. Li, Dynamic evolution of edge dislocation and its effect on bcc-hcp martensitic transformation in dual-phase high-entropy alloy. Vacuum 194, 110581 (2021)

    Article  ADS  CAS  Google Scholar 

  24. T. Gao, H. Song, B. Wang, Y. Gao, Y. Liu, Q. Xie et al., Molecular dynamics simulations of tensile response for FeNiCrCoCu high-entropy alloy with voids. Int. J. Mech. Sci. 237, 107800 (2023)

    Article  Google Scholar 

  25. R.N. Li, H.Y. Song, M.R. An, M.X. Xiao, Atomic-scale insight into mechanical properties and deformation behavior of crystalline/amorphous dual-phase high entropy alloys. Phys. Lett. A 446, 128272 (2022)

    Article  CAS  Google Scholar 

  26. X. Yang, J. Zhang, S. Sagar, T. Dube, B. Kim, Y. Jung et al., Molecular dynamics modeling of mechanical and tribological properties of additively manufactured AlCoCrFe high entropy alloy coating on aluminum substrate. Mater. Chem. Phys. 263, 124341 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of National Natural Science Foundation of China (No. 51875541), Key Research and Development Projects of Shaanxi (No. 2023-YBGY-467) and Xi'an Advanced Manufacturing Technology Project (21XJZZ0048).

Author information

Authors and Affiliations

Authors

Contributions

LC Zhuo conceived the idea, led the methodology, investigation, organization, and supervised the work, also responsible for writing the original draft, reviewing and editing the manuscript, and acquiring funding. JC Sun and BQ Chen contributed to writing, reviewing, and editing the manuscript. MR Zhan and CH Jiang participated in the manuscript's review and editing process.

Corresponding authors

Correspondence to Longchao Zhuo or Bingqing Chen.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Consent to participate

All authors agree with written text and presented results.

Consent for publication

All authors in accordance with obtained results are willing to publish this work. This paper is original and has not been submitted to other journals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zhuo, L., Chen, B. et al. Tensile behavior and microstructural evolution of TiMoZrV HEAs: a molecular dynamics study. Appl. Phys. A 130, 95 (2024). https://doi.org/10.1007/s00339-023-07255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07255-z

Keywords

Navigation