Skip to main content
Log in

Investigating the novel thermoelectric properties of magnesium, calcium, and barium divanadate oxides (XV2O6 where X = Mg, Ca, and Ba) for waste heat recovery applications in energy harvesting devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the unique thermoelectric properties along with structural, electronic, and photoluminescence properties of divanadate oxides XV2O6 (X = Mg, Ca, and Ba) have been investigated using DFT and experimental routes for waste heat recovery applications. For the synthesis process, the solid-state reaction technique was employed and the monoclinic structure of the synthesized oxides was confirmed by the XRD results. The formation of well-shaped particles was demonstrated by SEM images and the presence of Mg, Ca, Ba, V, and O with the proper compositions was confirmed by EDS mapping. The calculated bandgap values for MgV2O6, CaV2O6, and BaV2O6 were 3.20 eV, 2.14 eV, and 1.76 eV, respectively. To see how atomic orbitals affect the creation of bands, total and partial density of states calculations were also made. The BoltzTraP algorithm within Wien2k was used to study transport properties. Photoluminescence (PL) was done to analyze the optical behavior of synthesized oxides. For all the divanadate oxides XV2O6 (X = Mg, Ca, Ba), productive values for the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and figure of merit (ZT) have been observed. The semi-metallic nature, low synthesis cost, and thermoelectric results demonstrate that the studied oxides have exceptional potential for waste heat recovery applications and can be very efficient in energy harvesting devices, especially in thermoelectric generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the data generated or analyzed during this investigation is included in this article.

References

  1. A. Rehman, Z. Deyuan, Pakistan’s energy scenario: a forecast of commercial energy consumption and supply from different sources through 2030. Energy Sustain. Soc. 8, 26 (2018)

    Google Scholar 

  2. M. Jefferson, Global prospects for renewable energy. Renew. Energy 8, 1–5 (1996)

    Google Scholar 

  3. N. Nakicenovic, M. Jefferson, Global energy perspectives to 2050 and beyond. Energy Explor. Exploit. 14, 149–151 (1996)

    Google Scholar 

  4. X.Y. Shi, F.Q. Huang, M.L. Liu, L.P. Chen, Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1xInxSe4. Appl. Phys. Lett. 94, 122103 (2009)

    ADS  Google Scholar 

  5. J. Shuai, Y. Wang, H.S. Kim, Z. Liu, J. Sun, S. Chen, J. Sui, Z. Ren, Thermoelectric properties of Na-doped Zintl compound: Mg3xNaxSb2. Acta Mater. 93, 187–193 (2015)

    ADS  Google Scholar 

  6. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    ADS  Google Scholar 

  7. M. Orocz, M. Jamil, Thermopower study of GaN-based materials for next-generation thermoelectric devices and applications. J. Electron. Mater. 40, 513–517 (2011)

    ADS  Google Scholar 

  8. C. Han, Z. Li, S. Dou, Recent progress in thermoelectric materials. Chin. Sci. Bull. 59, 2073–2091 (2014)

    Google Scholar 

  9. M.S. Dresselhaus et al., New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)

    Google Scholar 

  10. Y. Takagiwa, Y. Pei, G. Pomrehn, G.J. Snyder, Dopants effect on the band structure of PbTe thermoelectric material. Appl. Phys. Lett. 101(9) (2012)

  11. T.M. Tritt, Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433–448 (2011)

    ADS  Google Scholar 

  12. A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)

    ADS  Google Scholar 

  13. D.M. Rowe, V.S. Shukl, The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot pressed silicon germanium alloy. J. Appl. Phys. 52, 7421–7426 (1981)

    ADS  Google Scholar 

  14. A.J.L. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2(5), 466–479 (2009)

    Google Scholar 

  15. W. Liu, X. Yan, G. Chen, Z. Ren, Recent advances in thermoelectric nanocomposites. Nano Energy 1(1), 42–56 (2012)

    Google Scholar 

  16. Q. Hao, D. Xu, N. Lu, H. Zhao, High-throughput ZT predictions of nanoporous bulk materials as next-generation thermoelectric materials: a material genome approach. Phys. Rev. B 93(20), 205206 (2016)

    ADS  Google Scholar 

  17. H. Wei, H. Gu, J. Guo, D. Cui, X. Yan, J. Liu, D. Cao, X. Wang, S. Wei, Z. Guo, Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv. Compos. Hybrid Mater. 1, 127–134 (2018)

    Google Scholar 

  18. X. Yang, X. Jiang, Y. Huang, Z. Guo, L. Shao, Building nanoporous metal–organic frameworks “armor” on fibers for high-performance composite materials. ACS Appl. Mater. Interfaces 9(6), 5590–5599 (2017)

    Google Scholar 

  19. E.N. Hurwitz, M. Asghar, A. Melton, B. Kucukgok, L. Su, M. Orocz, M. Jamil, N. Lu, I.T. Ferguson, Thermopower study of GaN-based materials for next-generation thermoelectric devices and applications. J. Electron. Mater. 40, 513–517 (2011)

    ADS  Google Scholar 

  20. N. Lu, I. Ferguson, III-Nitrides for energy production: photovoltaic and thermoelectric applications. Semicond. Sci. Technol. 28, 074023 (2013)

    ADS  Google Scholar 

  21. J. Desilvestro, O. Haas, Metal oxide cathode materials for electrochemical energy storage: a review. J. Electrochem. Soc. 137, 5–22 (1990)

    ADS  Google Scholar 

  22. W. Xue-Jin, F. Yun-Jie, X. Yan-Yun, N. Yu-Xin, F. Ke-An, L. Lin-De, Vanadium oxide thin films deposited on indium tin oxide glass by radio-frequency magnetron sputtering. Chin. Phys. 11, 737–740 (2002)

    Google Scholar 

  23. J.L. Hodeau, M. Gondrand, M. Labeau, J.C. Joubert, Structure cristalline de WV2O6 sur monocristal à 298 et 383 K. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 34(12), 3543–3547 (1978)

    ADS  Google Scholar 

  24. X. Sheng, Z. Li, Y. Cheng, Electronic and thermoelectric properties of V2O5, MgV2O5, and CaV2O5. Coatings 10(5), 453 (2020)

    Google Scholar 

  25. Z. Bo, S. Qing, H. De-Yan, First-principles calculations on the electronic and vibrational properties of β-V2O5. Chin. Phys. B 18, 4988 (2009)

    ADS  Google Scholar 

  26. N. Kumada, N. Takahashi, N. Kinomura, A.W. Sleight, Preparation of ABi2O6 (A = Mg, Zn) with the trirutile-type structure. Mater. Res. Bull. 32, 1003–1008 (1997)

    Google Scholar 

  27. O.K. Anderson, Linear methods in band theory. Phys. Rev. B 12, 3060 (1975)

    ADS  Google Scholar 

  28. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, “wien2k.” An augmented plane wave+ local orbitals program for calculating crystal properties, vol. 60, no. 1 (2001)

  29. J.B. Krieger, Y. Li, G.J. Iafrate, Derivation and application of an accurate Kohn–Sham potential with integer discontinuity. Phys. Lett. A 146, 256–260 (1990)

    ADS  Google Scholar 

  30. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    MathSciNet  ADS  Google Scholar 

  31. G.K.H. Madsen, D.J. Singh, Boltztrap. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    ADS  Google Scholar 

  32. L. Xi, S. Pan, X. Li, Y. Xu, J. Ni, X. Sun, J. Yang et al., Discovery of high-performance thermoelectric chalcogenides through reliable high-throughput material screening. J. Am. Chem. Soc. 140(34), 10785–10793 (2018)

    Google Scholar 

  33. Z.M. Gibbs, F. Ricci, G. Li, H. Zhu, K. Persson, G. Ceder, G. Hautier, A. Jain, G.J. Snyder, Effective mass and Fermi surface complexity factor from ab initio band structure calculations. Comput. Mater. 3, 8 (2017)

    Google Scholar 

  34. M.A. Ali, A.A. Alothman, M. Mushab, A. Khan, M. Faizan, DFT Insight into structural, electronic, optical and thermoelectric properties of eco-friendly double perovskites Rb2GeSnX6 (X = Cl, Br) for green energy generation. J. Inorg. Organomet. Polym. Mater. 33, 1–11 (2023)

  35. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Transport coefficients from first-principles calculations. Phys. Rev. B 68(12), 125210 (2003)

    ADS  Google Scholar 

  36. K. Boukri, T. Ouahrani, M. Badawi, K. Demmouche, R. Franco, J.M. Recio, Disclosing the behavior under hydrostatic pressure of rhombohedral MgIn2Se4 by means of first principles calculations. Phys. Chem. Chem. Phys. 22, 21909–21918 (2020)

    Google Scholar 

  37. A. Ayyaz, G. Murtaza, M. Umer, A. Usman, H.H. Raza, Structural, elastic, optoelectronic, and transport properties of Na-based halide double perovskites Na2CuMX6 (M = Sb, Bi, and X = Cl, Br) as renewable energy materials: a DFT insight. J. Mater. Res. 38, 4609–4624 (2023)

  38. J. Duan, W. Yin-We, Z. A-Peng, S. Liu, S.A. Dar, Electronic structure, elastic, mechanical, thermodynamic and thermoelectric investigations of Mn2PtX (X = Rh, Pd) Heusler alloys. Solid State Commun. 290, 12–21 (2019)

    ADS  Google Scholar 

  39. F. Ricci, W. Chen, U. Aydemir, G.J. Snyder, G.-M. Rignanese, A. Jain, G. Hautier, An ab initio electronic transport database for inorganic materials. Sci. Data 4(1), 1–13 (2017)

    Google Scholar 

  40. R. Xiong, B. Sa, N. Miao, Y.-L. Li, J. Zhou, Y. Pan, C. Wen, B. Wu, Z. Sun, Structural stability and thermoelectric property optimization of Ca2Si. RSC Adv. 7(15), 8936–8943 (2017)

    ADS  Google Scholar 

  41. N. Wang, M. Li, H. Xiao, Z. Gao, Z. Liu, X. Zu, S. Li, L. Qiao, Band degeneracy enhanced thermoelectric performance in layered oxyselenides by first-principles calculations. NPJ Comput. Mater. 7(1), 18 (2021)

    ADS  Google Scholar 

  42. H.P. Beck, A study on AB2O6 compounds, part II: the branches of the hcp family. Zeitschrift für Kristallographie-Cryst. Mater. 227(12), 843–858 (2012)

    Google Scholar 

  43. J.T. Szymanski, J.D. Scott, A crystal-structure refinement of synthetic brannerite, UTi2O6, and its bearing on the rate of alkaline-carbonate leaching of brannerite in ore. Can. Mineral. 20(2), 271–280 (1982)

    Google Scholar 

  44. W. Liu, H.S. Kim, Q. Jie, Z. Ren, Importance of high power factor in thermoelectric materials for power generation application: a perspective. Scr. Mater. 111, 3–9 (2016)

    Google Scholar 

  45. T.-W. Lan, K.-H. Su, C.-C. Chang, C.-L. Chen, M.-N. Ou, D.-Z. Wu, P.M. Wu, C.-Y. Su, M.-K. Wu, Y.-Y. Chen, Enhancing the figure of merit in thermoelectric materials by adding silicate aerogel. Mater. Today Phys. 13, 100215 (2020)

    Google Scholar 

  46. K.C. Mathai, S. Vidya, A. John, S. Solomon, J.K. Thomas, Structural, optical, and compactness characteristics of nanocrystalline CaNb2O6 synthesized through an autoigniting combustion method. Adv. Condens. Matter Phys. 2014(1–2):1–6 (2014)

  47. M.A. Subhan, T. Ahmed, N. Uddin, A.K. Azad, K. Begum, Synthesis, characterization, PL properties, photocatalytic and antibacterial activities of nano multi-metal oxide NiO⋅CeO2⋅ZnO. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 824–831 (2015)

    ADS  Google Scholar 

  48. M. Anpo, Y. Kubokawa, Photoluminescence of zinc oxide powder as a probe of electron-hole surface processes. J. Phys. Chem. 88(23), 5556–5560 (1984)

    Google Scholar 

  49. T.H. Gfroerer, Photoluminescence in analysis of surfaces and interfaces. Encycl. Anal. Chem. 67, 3810 (2000)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R29), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AA: synthesis; methodology; investigation; software; writing original draft. GM: review and editing; supervision; resources. MI: plotting XRD data in origin; investigation. AA: software; calculations. HA: resources.

Corresponding authors

Correspondence to Akhlaq Ahmed or Ghulam Murtaza.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Murtaza, G., Irfan, M. et al. Investigating the novel thermoelectric properties of magnesium, calcium, and barium divanadate oxides (XV2O6 where X = Mg, Ca, and Ba) for waste heat recovery applications in energy harvesting devices. Appl. Phys. A 130, 66 (2024). https://doi.org/10.1007/s00339-023-07235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07235-3

Keywords

Navigation