Skip to main content
Log in

Complex impedance analysis of silver-phosphate glassy system doped with different concentrations of silver iodide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electric and dielectric properties of silver phosphate glass of the composition (NH4H2PO4)1−x (AgNO3)1−x(AgI)x (x = 0, 0.05, 0.10, 0.15, 0.20 and 0.25) were characterised using impedance spectroscopy. Samples were synthesized using the conventional melt quenching method. A decrease in the bulk resistance of the samples was observed with either increasing the temperature and/or dopant concentration, which indicates a semi-conducting behaviour with thermal activation conduction mechanism. In addition, the relaxation peak was observed to shift towards higher frequency with increasing temperature or dopant concentration. The slight asymmetrical shape of the relaxation peak together with the presence of the centre of the semicircle in Nyquist plot below the real axis indicate a non-Debye relaxation type. Electrical conductivity was found to switch from DC-conductivity to AC-conductivity at a certain frequency (crossover frequency). The crossover activation energy showed an inverse proportion with dopant concentration. The material was observed to follow Jonscher’s power law, where the values of the power law exponent were found to decrease with increasing temperature. This behaviour indicates that the dominant conduction mechanism can be well-explained in terms of the Correlated Barrier Hopping (CBH) model. The activation energy and the hopping energy were found to decrease with increasing AgI-dopant level, indicating an enhancement in the electrical conductivity of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. G.G. Raju, Dielectrics in Electric Fields, 2nd edn. (CRC Press, Boca Raton, 2016), pp.50–51

    Google Scholar 

  2. V.F. Lvovich, Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena (Wiley, New York, 2012)

    Book  Google Scholar 

  3. S. Jayaseelan, N. Satyanarayana, M. Venkateswarlu, J. Mater. Sci. 39, 1717 (2004)

    Article  ADS  Google Scholar 

  4. R.K. Nagarch, R. Kumar, R.C. Agrawal, J. Non Cryst. Solids 352, 450 (2006)

    Article  ADS  Google Scholar 

  5. M. Shapaan, S.A. El-Badry, A.G. Mostafa, M.Y. Hassaan, M.H. Hazzaa, J. Phys. Chem. Solids 73, 407 (2012)

    Article  ADS  Google Scholar 

  6. H. Takahashi, H. Nakanii, T. Sakuma, Y. Onoda, Solid State Ionics 179, 2137 (2008)

    Article  Google Scholar 

  7. C. Tomasi, P. Mustarelli, A. Magistris, M. Garcia, J. Non Cryst. Solids 293–295, 785 (2001)

    Article  ADS  Google Scholar 

  8. D.L. Sidebottom, Phys. Rev. B 61(21), 14507 (2000)

    Article  ADS  Google Scholar 

  9. A. Alkhazali, M. Etier, M. Aljarrah, A. Alsukker, F. Salman, World J. Eng. 16, 477 (2019)

    Article  Google Scholar 

  10. L. Badr, Phys. Chem. Chem. Phys. 19, 21527 (2017)

    Article  Google Scholar 

  11. S. Bhattacharya, A. Ghosh, J. Phys. Condense. Matter 17, 5655 (2005)

    Article  ADS  Google Scholar 

  12. A. Shaheen, S. Qabajeh, Z. Khattari, J. Al-Jundi, A. Aqili, F. Salman, Phys. Solid State 63, 1 (2021)

    Article  Google Scholar 

  13. D.P. Singh, K. Shahi, K.K. Kar, Solid State Ionics 287, 89 (2016)

    Article  Google Scholar 

  14. J.D. Wicks, L. Borjesson, G. Bushnell-Wye, W.S. Howells, R.L. McGreevy, Phys. Rev. Lett. 74, 726 (1995)

    Article  ADS  Google Scholar 

  15. A. Sanson, F. Rocca, C. Armellini, G. Dalba, P. Fornasini, R. Grisenti, Phys. Rev. Lett. 101, 155901 (2008)

    Article  ADS  Google Scholar 

  16. S. Abdul Jawad, A. Abu-Surrah, M. Maghrabi, Z. Khattari, M. Al-Obeid, J. Mater. Sci. 46, 2748 (2011)

    Article  ADS  Google Scholar 

  17. Y.M. Moustafa, J. Mater. Sci. Mater. Electron. 6, 139 (1995)

    Article  Google Scholar 

  18. P.R. Das, B.N. Parida, R. Padhee, R.N.P. Choudhary, AIP Conf. Proc. 1372, 142 (2011)

    Article  ADS  Google Scholar 

  19. A. Mogus-Milanković, A. Santić, V. Licina, D.E. Day, J. Non Cryst. Solids 351, 3235 (2005)

    Article  ADS  Google Scholar 

  20. P. Córdoba-Torres, T.J. Mesquita, R.P. Nogueira, J. Phys. Chem. C 119, 4136 (2015)

    Article  Google Scholar 

  21. A. Bréhault, S. Cozic, R. Boidin, L. Calvez, E. Bychkov, P. Masselin et al., J. Solid State Chem. 220, 238 (2014)

    Article  ADS  Google Scholar 

  22. E. Abd El-Wahabb, Acta Phys. Pol. A 108, 985 (2005)

    Article  ADS  Google Scholar 

  23. S. Abdul Jawad, A. Abu-Surrah, M. Maghrabi, Z. Khattari, B. Physica, Condens Matter 406, 2565 (2011)

    ADS  Google Scholar 

  24. M. Dongol, M.M. El-Nahass, A. El-Denglawey, A.A. Abuelwafa, T. Soga, Chin. Phys. B 25, 6 (2016)

    Article  Google Scholar 

  25. S. Jayaseelan, P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, Mater. Chem. Phys. 87, 370 (2004)

    Article  Google Scholar 

  26. A. Chatterjee, A. Ghosh, Solid State Ionics 314, 1 (2018)

    Article  Google Scholar 

  27. A. Mogus-Milankovic, K. Sklepic, H. Blazanovic, P. Mosner, M. Vorokhta, L. Koudelka, J. Power. Sour. 242, 91 (2013)

    Article  ADS  Google Scholar 

  28. I.S. Yahia, N.A. Hegab, A.M. Shakra, A.M. Al-Ribaty, Phys. B 407, 2476 (2012)

    Article  ADS  Google Scholar 

  29. H. Chouaib, S. Kamoun, J. Phys. Chem. Solids 85, 218 (2015)

    Article  ADS  Google Scholar 

  30. M.M. El-Nahass, A.A. Atta, E.F.M. El-Zaidia, A.A.M. Farag, A.H. Ammar, Mater. Chem. Phys. 143, 490 (2014)

    Article  Google Scholar 

  31. A.A.A. Darwish, E.F.M. El-Zaidia, M.M. El-Nahass, T.A. Hanafy, A.A. Al-Zubaidi, J. Alloys Compd. 589, 393 (2014)

    Article  Google Scholar 

  32. A. Shaheen, M. Maghrabi, F. Salman, Z. Khattari, Appl. Phys. A 124, 54 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The financial support from the Hashemite University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the study conception and design. Materials preparation, data collection and analysis were performed by AAS, HG, MM, AA-R and AAM. The first draft of the manuscript was written by AIA and all authors comment in the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adel A. Shaheen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, A.A., Maghrabi, M., Ghannam, H. et al. Complex impedance analysis of silver-phosphate glassy system doped with different concentrations of silver iodide. Appl. Phys. A 130, 52 (2024). https://doi.org/10.1007/s00339-023-07220-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07220-w

Keywords

Navigation