Skip to main content
Log in

Chemical bath deposition of mercury bismuth sulfide (HgBi2S3) sensitized titanium dioxide (TiO2) thin films: An In-depth analysis and characterization study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mercury bismuth sulfide (HgBi2S3), a member of the II–V–VI group of semiconducting materials, has not been previously synthesized, investigated, or reported as a potential absorber layer for solar cells. This ternary metal chalcogen exhibits an optical energy band gap ranging from 1.4 to 1.7 eV, demonstrating efficient absorption in the range of 104 to 105 cm−1. In this study, thin films of titanium dioxide (TiO2) and HgBi2S3 were synthesized and deposited using spin coating and chemical bath deposition methods, respectively as a function of deposition time. The synthesized TiO2/HgBi2S3 thin film was subjected to characterization techniques including X-ray diffraction (XRD), UV–Visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray (EDXS) spectroscopic analysis, electrochemical impedance spectroscopy (EIS) and photoelectrochemical performance (JV) evaluation. XRD analysis confirmed the deposition of a polycrystalline thin film with an average crystalline size ranging from 401 to 789 nm, depending on the deposition time of 60 to 180 min.The average particle size of the film varied from 218 to 479 nm, and the thickness of the TiO2/HgBi2S3 thin film was measured to be between 10.14 and 12.47 μm. After sensitization, the contact angle of the TiO2 thin film decreased from 400 to 180, and this change was independent of the deposition time of the HgBi2S3 thin film. The absorbance of the TiO2 thin film showed an increasing trend with deposition time, while the optical energy gap of TiO2 decreased from 3.12 to 1.54 eV following the deposition of the HgBi2S3 thin film. EDXS analysis confirmed the successful deposition of HgBi2S3 onto the TiO2 thin film. However, the HgBi2S3 sensitized TiO2 thin film exhibited only marginal photovoltaic performance with maximum short circuit current of 0.3537 mA/cm2 for deposition time of 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data and code availability

The data that support the findings of this study are available from the corresponding author, [SAP], upon reasonable request.

References

  1. L. Frass, L. Partain, Solar cells and their applications, 2nd edn. (John Wiley & Sons Inc., Hoboken, NJ, 2010)

    Book  Google Scholar 

  2. B. O’Regan, M. Grätzel, A Nature 353, 737 (1991)

    Article  ADS  Google Scholar 

  3. Poortmans, J., & Arkhipov, V. Thin Film Solar Cells - Fabrication, Characterization and Application. (Wiley Series in Materials for Electronic and Optoelectronic Applications, England 2006)

  4. N.G. Park, K.M. Kim, M.G. Kang, K.S. Ryu, S.H. Chang, Y. Shin, J Advanced Materials 17, 2349 (2005)

    Article  Google Scholar 

  5. M.J. Jeng, Y.L. Wung, L.B. Chang, L. Chow, International Journal of Photoenergy Article ID 563897, 1 (2013)

    Google Scholar 

  6. J.E. Ikpesu, S.E. Iyuke, M. Daramola, A.O. Okewale, Sol. Energy 206, 918 (2020)

    Article  ADS  Google Scholar 

  7. R.S. Mane, C.D. Lokhande, Mater. Chem. Phys. 65, 1 (2000)

    Article  Google Scholar 

  8. C. Coughlan, M. Ibáñez, O. Dobrozhan, A. Singh, A. Cabot, & Ryan. K Chemical Reviews 117, 5865 (2017)

    Article  Google Scholar 

  9. N. Pai, J. Lu, D.C. Senevirathna, S.J. Anthony, Materials Chemistry C 6, 2483 (2018)

    Article  Google Scholar 

  10. Zhou, S., Yang, J., Li, Z. W., Jiang, Q., Luo, Y., Zhang, D., et al. Journal of the Electrochemical Society, 163 (2016)

  11. P.C. Huang, W.C. Yang, M.W. Lee, J. Phys. Chem. Lett. 17, 18308 (2013)

    Article  Google Scholar 

  12. S. Xu, N. Cheng, H. Yin, D. Cao, & Mi. B Chemical Engineering Journal 397, 125463 (2020)

    Article  Google Scholar 

  13. N.S. Samsi, N.A.S. Effendi, R. Zakaria, A.M.M. Ali, Materials Research Express 4, 044005 (2017)

    Article  ADS  Google Scholar 

  14. L. Yingpin, W. Yanan, F. Kangning, H. Yanzhong, P. Pei, J.S. Bao, Materials Research Express 5, 065903 (2018)

    Article  Google Scholar 

  15. J. Yang, J.Y. Kim, J.H. Yu, T.Y. Ahn, H. Lee, T.S. Choi et al., Phys. Chem. Chem. Phys. 15, 20517 (2013)

    Article  Google Scholar 

  16. W.S. Brower, H.S. Parker, R. Roth, S Materials Research Bulletin 8, 859 (1973)

    Article  Google Scholar 

  17. A.U. Ubale, S.C. Shirbhate, J. Alloy. Compd. 497, 228 (2010)

    Article  Google Scholar 

  18. M.E. Rincón, M. Sánchez, P.J. George, A. Sánchez, P.K. Nair, J. Solid State Chem. 136, 167 (1998)

    Article  ADS  Google Scholar 

  19. R.A. Wagh, A.N. Kulkarni, P.K. Baviskar, Mater. Renewable Sustainable Energy 7, 13 (2018)

    Article  Google Scholar 

  20. M. Barthaburu, I.G. Pérez, I. Aguiar, H. Bentos Pereira, L.P. Bethencourt et al., Nano-Structures & Nano-Objects 10, 15 (2017)

    Article  Google Scholar 

  21. X. Xu, E.R. Carraway, Nanomaterials and Nanotechnology 2, 17 (2012)

    Article  Google Scholar 

  22. R.S. Patil, C.D. Lokhande, R.S. Mane, H.M. Pathan, O.S. Joo, S.H. Han, Mater. Sci. Eng. B 129, 59 (2006)

    Article  Google Scholar 

  23. E. Pineda, M.E. Nicho, P.K. Nair, H. Hu, Sol. Energy 86, 1017 (2012)

    Article  ADS  Google Scholar 

  24. H.C. Liao, M.C. Wu, M.H. Jao, C.M. Chuang, Y.F. Chen, W.F. Su, Cryst Eng Comm 14, 3645 (2012)

    Article  Google Scholar 

  25. P.R. Nikam, P.K. Baviskar, J.V. Sali, K.V. Gurav, J.H. Kim, B.R. Sankapal, Ceram. Int. 41, 10394 (2015)

    Article  Google Scholar 

  26. J. Arumugam, A. George, A.D. Raj, A.A. Irudayaraj, R.L. Josephine, S.J. Sundaram et al., J. Alloy. Compd. 863, 158681 (2021)

    Article  Google Scholar 

  27. R.P. Usha, R. Oommen, C. Sanjeeviraja, Chalcogenide Letters 8, 683 (2011)

    Google Scholar 

  28. Cullity, B. D. Elements of X-ray diffraction 2nd ed. (Addison-Wesley Publishing Company USA 1978)

  29. M. Khakzad, M. Pourfarzad, S.M. Sadrnezhaad, Mater. Sci. Eng. B 222, 11 (2016)

    Google Scholar 

  30. Y. Tachibana, J.E. Moser, M. Grätzel, D.R. Klug, J.R. Durrant, J. Phys. Chem. B 100, 20056 (1996)

    Article  Google Scholar 

  31. X. Li, Y. Sun, H. Zhang, X. Wang, Mater. Sci. Eng. B 248, 103 (2018)

    Google Scholar 

  32. S. Jiang, Y. Chen, B. Li, J. Wang, Journal of Materials Chemistry A 5, 17736 (2017)

    Google Scholar 

  33. R.G. Pearson, Journal of the Chemical Society. Chem. Commun. 83, 269 (1983)

    Google Scholar 

  34. Z. Chen, Y. Zhang, J. Liu, H. Zhang, Journal of Materials Chemistry A 6, 12035 (2018)

    Google Scholar 

  35. J. Tauc, Optical absorption of semiconductors. Solid State Physics 17, 1–102 (1965)

    Google Scholar 

  36. H. Li, L. Ma, S. Jiang, J. Chen, ACS Appl. Mater. Interfaces 9, 34657 (2017)

    Google Scholar 

  37. Q. Wang, J.E. Moser, M. Grätzel, J. Phys. Chem. B 109, 14945 (2005)

    Article  Google Scholar 

  38. A.J. Bard, L.R. Faulkner, Electrochemical methods: Fundamentals and applications (Wiley, New York, 2001), pp.523–524

    Google Scholar 

  39. Wang, H., Chen, X., & Liu, J. Electrochemical impedance spectroscopy for characterization of dye-sensitized solar cells. In Electrochemical impedance spectroscopy: Theory and application (Springer, Cham, 2016) 195–219

  40. S. Majumder, N. Mansor, T.S. Miller, I. Dedigama, A.B. Jorge, P.F. McMillan, Z. Chen, Electrochim. Acta 222, 100 (2016)

    Article  Google Scholar 

  41. M.A. Green, Third generation photovoltaics: Advanced solar cells (Imperial College Press, London, 2002), pp.161–162

    Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the Kaviyatri Bahinabai Chaudhari North Maharashtra University Jalgaon, Department of Physics PSGVP Mandal’s Arts, Commerce & Science College Shahada, Nandurbar, Advanced Physics Lab-Department of Physics, Savitribai Phule University Pune, Baburaoji Gholap Science College Pune and Icon Analytical New Mumbai for pro- viding characterization facilities.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Sachin Padwal, Dr Rahul Wagh, Dr Jivan Thakare, Dr Rajendra Patil; Methodology: Sachin Padwal; Formal analysis and investigation: Sachin Padwal, Dr Rahul Wagh; Writing—original draft preparation: Sachin Padwal; Writing—review and editing: Sachin Padwal, Dr Rahul Wagh, Dr Jivan Thakare; Funding acquisition: Not applicable; Resources: Sachin Padwal; Supervision: Dr Rahul Wagh, Dr Jivan Thakare, Dr Rajendra Patil.

Corresponding author

Correspondence to Sachin Padwal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare. Also, the authors have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padwal, S., Wagh, R., Thakare, J. et al. Chemical bath deposition of mercury bismuth sulfide (HgBi2S3) sensitized titanium dioxide (TiO2) thin films: An In-depth analysis and characterization study. Appl. Phys. A 130, 34 (2024). https://doi.org/10.1007/s00339-023-07202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07202-y

Keywords

Navigation