Skip to main content

Advertisement

Log in

Serum SERS spectroscopy combined with classification algorithm in the non-destructive identification of cervical cancer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gold nanoparticles/785 porous silicon photonic crystals (Au NPs/785 PSi PhCs) were used as substrates in combination with a low-concentration serum surface-enhanced Raman spectroscopy (SERS) detection scheme to obtain spectral signals from healthy individuals and cervical cancer patients. The best principal component scores were selected by principal component analysis (PCA) combined with linear discriminant analysis (LDA) and support vector machine (SVM) to analyze the spectral differences distinguishing healthy and cervical cancer patients. The accuracy of the two models was 97.9% and 96.9%, respectively. SERS technique based on Au NPs/785 PSi PhCs has great potential to improve the screening of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. K. Meysam, A.K.M. Chowdhury, R. Haque, K. Panagiotis, B. Tan, V. Krishnan, Self-assembled N-doped Q-dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality. Sens. Actuators B 323, 1703 (2020). https://doi.org/10.1016/j.snb.2020.128703

    Article  Google Scholar 

  2. L. Dan, M. Ran, Y. Liu, J.B.L. Xia, X. Cao, SERS spectroscopy using Au-Ag nanoshuttles and hydrophobic paper-based Au nanoflower substrate for simultaneous detection of dual cervical cancer-associated serum biomarkers. Anal. Bioanal. Chem. 412, 7099–7112 (2020). https://doi.org/10.1007/s00216-020-02843-x

    Article  Google Scholar 

  3. S.S. Wergeland, P. Suhrke, R.B. Wallem, B. Jannicke, M.R. Johansen, A. Khalid, Accuracy of cervical cytology: comparison of diagnoses of 100 Pap smears read by four pathologists at three hospitals in Norway. BMC Clin. Pathol. 17, 18 (2017). https://doi.org/10.1186/s12907-017-0058-8

    Article  Google Scholar 

  4. D.R. Usha, P. Chandran, S. Salam, K.R. Rajesh, B. Ewert, S. Kunjuraman, B.N. Balakrishnan, Computer assisted pap smear analyser for cervical cancer screening using quantitative microscopy. J Cytol Histol S3, 2157–7099 (2015). https://doi.org/10.4172/2157-7099.S3-010

    Article  Google Scholar 

  5. G. Zozan, B. Huri, G.G. Inal, A. Soykan, Y. Ilhan, H.M. Tolgahan, S. Dilara, T. Nevzat, D. Joanna, Assessment of structural protein expression by FTIR and biochemical assays as biomarkers of metabolites response in gastric and colon cancer. Talanta 231, 122353 (2021). https://doi.org/10.1016/j.talanta.2021.122353

    Article  Google Scholar 

  6. D. Ma, L. Shang, J. Tang, Y. Bao, J. Fu, J. Yin, Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 256, 119732 (2021). https://doi.org/10.1016/j.saa.2021.119732

    Article  Google Scholar 

  7. B. Shen, H. Yang, J. Chen, X. Liu, M. Zhou, Study the interaction between juglone and calf thymus DNA by spectroscopic and molecular docking techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 261, 119998 (2021). https://doi.org/10.1016/j.saa.2021.119998

    Article  ADS  Google Scholar 

  8. S. Andrei, M. Vlad, C. Razvan, A. Iulia, R. Razvan, C. Dana, E.P. Ioana, S. Carmen, L. Nicolae, C. Nicolae, Combining SERS analysis of serum with PSA levels for improving the detection of prostate cancer. Nanomedicine 13(19), 2455–2467 (2018). https://doi.org/10.2217/nnm-2018-0127

    Article  Google Scholar 

  9. K. Liu, S. Jin, Z. Song, L. Jiang, L. Ma, Z. Zhang, Label-free surface-enhanced Raman spectroscopy of serum based on multivariate statistical analysis for the diagnosis and staging of lung adenocarcinoma. Vib. Spectrosc. 100, 177–184 (2019). https://doi.org/10.1016/j.vibspec.2018.12.007

    Article  Google Scholar 

  10. J. Wang, H. Le-The, T. Karamanos, R.N.S. Suryadharma, A. van den Berg, P.W.H. Pinkse, C. Rockstuhl, L. Shui, J.C.T. Eijkel, L.I. Segerink, Plasmonic nanocrystal arrays on photonic crystals with tailored optical resonances. ACS Appl. Mater. Interfaces 12(33), 37657–37669 (2020). https://doi.org/10.1021/acsami.0c05596

    Article  Google Scholar 

  11. R. Liu, X. Yang, G. Yan, M. Si, W. Tang, Label-free and non-invasive BS-SERS detection of liver cancer based on the solid device of silver nanofilm. Raman Spectrosc. 49, 1426–1434 (2018). https://doi.org/10.1002/jrs.5408

    Article  ADS  Google Scholar 

  12. D. Cialla, S. Pollok, C. Steinbrücker, K. Weber, J. Popp, SERS-based detection of biomolecules. Nanophotonics 3(6), 383–411 (2014). https://doi.org/10.1515/nanoph-2013-0024

    Article  ADS  Google Scholar 

  13. R. Beeram, R. Vepa Kameswara, R. Soma-Venugopal, Recent trends in SERS-based plasmonic sensors for disease diagnostics, biomolecules detection, and machine learning techniques. Biosensors 13(3), 328 (2023). https://doi.org/10.3390/bios13030328

    Article  Google Scholar 

  14. S. Feng, D. Lin, J. Lin, B. Li, Z. Huang, G. Chen, W. Zhang, L. Wang, J. Pan, R. Chen, H. Zeng, Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst 138, 3967–3974 (2013). https://doi.org/10.1039/c3an36890d

    Article  ADS  Google Scholar 

  15. Y. Ma, J. Chi, Z. Zheng, A. Athula, K.I. Yi, H. Du, Therapeutic prognosis of prostate cancer using surface-enhanced Raman scattering of patient urine and multivariate statistical analysis. Biophotonics 14, e202000275 (2021). https://doi.org/10.1002/jbio.202000275

    Article  Google Scholar 

  16. H.F. Nargis, H. Nawaz, H.N. Bhatti, K. Jilani, M. Saleem, Comparison of surface enhanced Raman spectroscopy and Raman spectroscopy for the detection of breast cancer based on serum samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 246, 119034 (2021). https://doi.org/10.1016/j.saa.2020.119034

    Article  Google Scholar 

  17. Y. Yang, H. Li, L. Jones, J. Murray, J. Haverstick, K. Naikare Hemant, C. Mosley Yung Yi, A. Tripp-Ralph, B. Ai, Y. Zhao, Rapid detection of SARS-CoV-2 RNA in human nasopharyngeal specimens using surface-enhanced raman spectroscopy and deep learning algorithms. ACS Sens. 8(1), 297–307 (2022). https://doi.org/10.1021/acssensors.2c02194

    Article  Google Scholar 

  18. X. Wang, J. Wang, Z. Jiang, D. Tao, X. Zhang, C. Wang, Silver loaded anodic aluminum oxide dual-bandgap heterostructure photonic crystals and their application for surface enhanced Raman scattering. Appl. Surf. Sci. 544, 148881 (2021). https://doi.org/10.1016/j.apsusc.2020.148881

    Article  Google Scholar 

  19. J. Wang, L. Hai, K. Theodosios, N.S. Radius, A. Berg, W.H.P. Pepijn, R. Carsten, L. Shui, C.T. Eijkel, L.I. Segerink, Plasmonic nanocrystal arrays on photonic crystals with tailored optical resonances. ACS Appl. Mater. Interfaces 12, 37657–37669 (2020). https://doi.org/10.1021/acsami.0c05596

    Article  Google Scholar 

  20. M. Ahmed, M.M. Abadla, H.A. Elsayed, 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. J. Mol. Liq. 322, 114978 (2021). https://doi.org/10.1016/j.molliq.2020.114978

    Article  Google Scholar 

  21. L.A. Alessio, M.J. Faro, I. Alessia, Biosensing platforms based on silicon nanostructures: a critical review. Anal. Chim. Acta 1160, 338393 (2021). https://doi.org/10.1016/j.aca.2021.338393

    Article  Google Scholar 

  22. T. Masato, S. Satoshi, T. Kouta, C. Edward, N. Kengo, S. Sylvain, K. Eiichi, G. Zhang, S. Akihiko, N. Masaya, Hybrid nanowire photodetector integrated in a silicon photonic crystal. ACS Photonics 7, 3467–3473 (2020). https://doi.org/10.1021/acsphotonics.0c01356

    Article  Google Scholar 

  23. A. Sofia, M. Naama, S. Ester, W. Sharon, Porous silicon-based photonic biosensors, current status and emerging applications. Anal. Chem. 91, 441–467 (2019). https://doi.org/10.1021/acs.analchem.8b05028

    Article  Google Scholar 

  24. H. Li, Q. Wang, J. Tang, N. Gao, X. Yue, F. Zhong, X. Lv, J. Fu, T. Wang, C. Ma, Establishment of a reliable scheme for obtaining highly stable SERS signal of biological serum. Biosens. Bioelectron. 189, 113315 (2021). https://doi.org/10.1016/j.bios.2021.113315

    Article  Google Scholar 

  25. H. Jin, Q. Lu, S. Jin, Z. Song, Y. Zou, H. Ding, H. Gao, X. Chen, Research on measurement conditions for obtaining significant, stable, and repeatable SERS signal of human blood serum. IEEE Photonics Soc. 9, 1943–2655 (2017). https://doi.org/10.1109/JPHOT.2017.2672900

    Article  Google Scholar 

  26. L. Lu, J. Yu, X. Liu, X. Yang, Z. Zhou, Q. Jin, R. Xiao, C. Wang, Rapid, quantitative and ultra-sensitive detection of cancer biomarker by a SERRS-based lateral flow immunoassay using bovine serum albumin coated Au nanorods. RSC Adv. 10, 271 (2020). https://doi.org/10.1039/C9RA09471G

    Article  ADS  Google Scholar 

  27. X. Yue, H. Li, X. Lv, J. Tang, Porous silicon photonic crystal/silver composite produced by microwave-assisted reduction: applications to surface-enhanced Raman scattering. Opt. Mater. (2019). https://doi.org/10.1016/j.omx.2019.100027

    Article  Google Scholar 

  28. H. Chen, X. Li, B. Neil, Y. Liu, Y. Zhou, J. Han, W. Xu, Identification and characterization of bladder cancer by low resolution fiber-optic Raman spectroscopy. J. Biophotonics (2018). https://doi.org/10.1002/jbio.201800016

    Article  Google Scholar 

  29. X. Zheng, G. Lv, Y. Zhang, X. Lv, Z. Gao, J. Tang, J. Mo, Rapid and non-invasive screening of high renin hypertension using Raman spectroscopy and different classification algorithms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 215, 244–248 (2019). https://doi.org/10.1016/j.saa.2019.02.063

    Article  ADS  Google Scholar 

  30. M. Vlad, S. Andreea, S. Andrei, S.D. Iancu, B. Imre, C.D. Alecsa, R. Claudiu, A.R. Chiorean, E. Daniela, L. Nicolae, S. Carmen, D.T. Eniu, Breast cancer diagnosis by surface-enhanced Raman scattering (SERS) of urine. Appl. Sci. 9, 806 (2019). https://doi.org/10.3390/app9040806

    Article  Google Scholar 

  31. Y. Zhang, X. Ye, G. Xu, X. Jin, M. Lua, J. Lou, L. Wang, C. Huang, J. Ye, Identification and distinction of non-small-cell lung cancer cells by intracellular SERS nanoprobes. RSC Adv. 6, 5401 (2016). https://doi.org/10.1039/C5RA21758J

    Article  ADS  Google Scholar 

  32. V. Enrique, M.J. Carlos, M.B. Esmeralda, J.L. Felipe, A. Adriana, J. Solis, Breast cancer detection based on serum sample surface enhanced Raman spectroscopy. Lasers Med. Sci. 31, 1317–1324 (2016). https://doi.org/10.1007/s10103-016-1976-x

    Article  Google Scholar 

  33. M. Zanyar, R. Shazza, I.U. Rehman, Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541 (2007). https://doi.org/10.1080/05704920701551530

    Article  Google Scholar 

  34. Y.Y.Y. Lin, C. Xu, K. Lin, Q. Ye, X. Wang, S. Xie, R. Chen, J. Lin, Label-free detection of nasopharyngeal and liver cancer using surface enhanced Raman spectroscopy and partial lease squares combined with support vector machine. Biomed. Opt. Express Opt. Express 9, 6053–6065 (2018). https://doi.org/10.1364/BOE.9.006053

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Foundation of Guizhou Province (QKHJ[2020]1Y259); the United Foundation of Zunyi City and Zunyi Normal Collage (ZSKHHZ272); the Natural Science Foundation of Xinjiang Uygur Autonomous Region (PT2302).

Author information

Authors and Affiliations

Authors

Contributions

NG: conceptualization and roles/writing—original draft and writing—review and editing; QW: investigation; JT: methodology, data curation, validation, supervision; XL: visualization; HL: formal analysis; XY: project administration; JF: resources; FZ: funding acquisition; TW: project administration.

Corresponding authors

Correspondence to Jun Tang or Furu Zhong.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3559 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Wang, Q., Tang, J. et al. Serum SERS spectroscopy combined with classification algorithm in the non-destructive identification of cervical cancer. Appl. Phys. A 129, 822 (2023). https://doi.org/10.1007/s00339-023-07116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07116-9

Keywords

Navigation