Skip to main content
Log in

Investigation of the structural, morphological and magnetic properties of barium hexaferrite added with magnesium oxide nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

(BaFe12O19)1 − x/(MgO)x nanocomposites, with weight fraction x = 0, 0.1, 0.2, 0.4, 0.8 and 1, have been synthesized by co-precipitation method followed by high-speed ball-milling techniques. Structural, optical, and magnetic properties have been studied. XRD analysis confirmed the formation of the two pure phases BaFe12O19 and MgO, with the formation of a MgFe2O4 as a minor phase in the nanocomposites. Transmission electron microscopy (TEM) followed by high resolution TEM and SAED were used to study the morphology, crystallinity and lattice spacing, respectively. TEM micrographs revealed the co-existence of spherical and nanorod-shaped particles for pure BaFe12O19, and cubic shape for MgO nanoparticles. Raman spectrum for BaFe12O18 showed strong and sharp modes, identifying the formation of barium hexaferrite phase. However, MgO showed two broad peaks attributed to G and D bands. The energy dispersive X-ray and scanning electron microscope were performed for elemental analysis and surface topography, respectively. The real elemental compositions matched well with the starting values. X-ray photoelectron spectroscopy was conducted for the investigation of the elemental compositions and the oxidation states of (Ba2+, Fe2+, Fe3+ Mg2+ and O2−). The magnetic properties like saturation magnetization, remanent magnetization, coercivity and squareness ratio have been determined using the MH loops. These loops revealed the hard ferromagnetic behavior of pure barium hexaferrite and the mixture of ferromagnetism with diamagnetic behavior at high fields for pure MgO. The saturation and remanent magnetizations decreased with the addition of MgO phase. dM/dH curves showed a weak magnetic coupling between the hard magnetic BaFe12O19 and the soft magnetic MgFe2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215–216, 171–183 (2000). https://doi.org/10.1016/S0304-8853(00)00106-2

    Article  ADS  Google Scholar 

  2. V.G. Harris, Modern Microwave Ferrites. IEEE Trans. Magn. 48(3), 1075–1104 (2012). https://doi.org/10.1109/TMAG.2011.2180732

    Article  ADS  Google Scholar 

  3. S.E. Jacobo, C. Domingo-Pascual, R. Rodriguez-Clemente, M.A. Blesa, Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation. J. Mater. Sci. 32(4), 1025–1028 (1997). https://doi.org/10.1023/A:1018582423406

    Article  ADS  Google Scholar 

  4. R.C. Pullar, M.D. Taylor, A.K. Bhattacharya, Novel aqueous sol–gel preparation and characterization of barium M ferrite, BaFe12O19 fibres. J. Mater. Sci. 32(2), 349–352 (1997). https://doi.org/10.1023/A:1018593014378

    Article  ADS  Google Scholar 

  5. M.A. Almessiere et al., Review on functional bi-component nanocomposites based on hard/soft ferrites: Structural, magnetic, electrical and microwave absorption properties. Nano-Struct. Nano-Obj. 26, 100728 (2021). https://doi.org/10.1016/j.nanoso.2021.100728

    Article  Google Scholar 

  6. Enhancement on the exchange coupling behavior of SrCo0.02Zr0.02Fe11.96O19/MFe2O4 (M=Co, Ni, Cu, Mn and Zn) as hard/soft magnetic nanocomposites. https://en.x-mol.com/paper/article/6015309. Accessed 30 Jan 2023

  7. M. Zareef Khan, H. Abbas, K. Nadeem, A. Iqbal, I.-L. Papst, Concentration dependent exchange coupling in BaFe12O19/NiFe2O4 nanocomposites. J. Alloys Compd. 922, 166105 (2022). https://doi.org/10.1016/j.jallcom.2022.166105

    Article  Google Scholar 

  8. S. Manjura Hoque et al., Exchange-spring mechanism of soft and hard ferrite nanocomposites. Mater. Res. Bull. 48(8), 2871–2877 (2013). https://doi.org/10.1016/j.materresbull.2013.04.009

    Article  Google Scholar 

  9. C. Pahwa, S. Mahadevan, S.B. Narang, P. Sharma, Structural, magnetic and microwave properties of exchange coupled and non-exchange coupled BaFe12O19/NiFe2O4 nanocomposites. J. Alloy. Compd. 725, 1175–1181 (2017). https://doi.org/10.1016/j.jallcom.2017.07.220

    Article  Google Scholar 

  10. H. Yang, M. Liu, Y. Lin, Y. Yang, Simultaneous enhancements of remanence and (BH)max in BaFe12O19/CoFe2O4 nanocomposite powders. J. Alloy. Compd. 631, 335–339 (2015). https://doi.org/10.1016/j.jallcom.2015.01.012

    Article  Google Scholar 

  11. F. Li, Q. Yang, D.G. Evans, X. Duan, Synthesis of magnetic nanocomposite MgO/MgFe2O4 from Mg-Fe layered double hydroxides precursors. J. Mater. Sci. 40(8), 1917–1922 (2005). https://doi.org/10.1007/s10853-005-1211-9

    Article  ADS  Google Scholar 

  12. K. Ali, J. Iqbal, T. Jana, N. Ahmad, I. Ahmad, D. Wan, Enhancement of microwaves absorption properties of CuFe2O4 magnetic nanoparticles embedded in MgO matrix. J. Alloy. Compd. 696, 711–717 (2017). https://doi.org/10.1016/j.jallcom.2016.10.220

    Article  Google Scholar 

  13. H. Helmiyati, G.H. Abbas, Y. Budiman, S. Ramadhani, Synthesis of MgFe2O4-MgO nanocomposite: influence of MgO on the catalytic activity of magnesium ferrite in biodiesel production. Rasayan J. Chem. J. Chem. 13, 298–305 (2020). https://doi.org/10.31788/RJC.2020.1315497

    Article  Google Scholar 

  14. R.S. Yadav et al., Magnetic properties of Co1−xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378, 190–199 (2015). https://doi.org/10.1016/j.jmmm.2014.11.027

    Article  ADS  Google Scholar 

  15. A. Amri, Z.T. Jiang, T. Pryor, C.-Y. Yin, S. Djordjevic, Developments in the synthesis of flat plate solar selective absorber materials via sol–gel methods: a review. Renew. Sustain. Energy Rev. 36, 316–328 (2014). https://doi.org/10.1016/j.rser.2014.04.062

    Article  Google Scholar 

  16. A. Hajalilou, S.A. Mazlan, K. Shameli, A comparative study of different concentrations of pure Zn powder effects on synthesis, structure, magnetic and microwave-absorbing properties in mechanically-alloyed Ni–Zn ferrite. J. Phys. Chem. Solids 96–97, 49–59 (2016). https://doi.org/10.1016/j.jpcs.2016.05.001

    Article  ADS  Google Scholar 

  17. R. Yensano, S. Phokha, Effect of pH on single phase BaFe12O19 nanoparticles and their improved magnetic properties. J. Mater. Sci. Mater. Electron. 31(14), 11764–11773 (2020). https://doi.org/10.1007/s10854-020-03728-6

    Article  Google Scholar 

  18. W. Wang, X. Qiao, J. Chen, F. Tan, H. Li, Influence of titanium doping on the structure and morphology of MgO prepared by coprecipitation method. Mater. Char. 60(8), 858–862 (2009). https://doi.org/10.1016/j.matchar.2009.02.002

    Article  Google Scholar 

  19. K. Habanjar, H. Shehabi, A.M. Abdallah, R. Awad, Effect of calcination temperature and cobalt addition on structural, optical and magnetic properties of barium hexaferrite BaFe12O19 nanoparticles. Appl. Phys. A 126(6), 402 (2020). https://doi.org/10.1007/s00339-020-03497-3

    Article  ADS  Google Scholar 

  20. K. Kumar, A. Loganathan, Structural, electrical and magnetic properties of large ionic size Sr2+ ions substituted Mg-Ferrite nanoparticles. Mater. Chem. Phys. 214, 229–238 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.067

    Article  Google Scholar 

  21. A. Azhari, S.M. Sharif, F. Golestanifard, A. Saberi, Phase evolution in Fe2O3/MgO nanocomposite prepared via a simple precipitation method. Mater. Chem. Phys. 124(1), 658–663 (2010). https://doi.org/10.1016/j.matchemphys.2010.07.030

    Article  Google Scholar 

  22. S. Kundu, B. Satpati, T. Kar, S.K. Pradhan, Microstructure characterization of hydrothermally synthesized PANI/V2O5·nH2O heterojunction photocatalyst for visible light induced photodegradation of organic pollutants and non-absorbing colorless molecules. J. Hazard. Mater. 339, 161–173 (2017). https://doi.org/10.1016/j.jhazmat.2017.06.034

    Article  Google Scholar 

  23. M. Yassine, N. El Ghouch, A.M. Abdallah, K. Habanjar, R. Awad, Structure and magnetic investigation of hard/soft Ba0.5Sr0.5Fe12O19/x(Ni0.5Zn0.5)Fe2O4 nanocomposite. J. Alloy. Compd. 907, 164501 (2022). https://doi.org/10.1016/j.jallcom.2022.164501

    Article  Google Scholar 

  24. R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015). https://doi.org/10.1016/j.jmmm.2014.12.059

    Article  ADS  Google Scholar 

  25. W. Qin, T. Nagase, Y. Umakoshi, J.A. Szpunar, Relationship between microstrain and lattice parameter change in nanocrystalline materials. Philos. Mag. Lett. 88(3), 169–179 (2008). https://doi.org/10.1080/09500830701840155

    Article  ADS  Google Scholar 

  26. T. Kaur, S. Kumar, B.H. Bhat, A.K. Srivastava, Enhancement in physical properties of barium hexaferrite with substitution. J. Mater. Res. 30(18), 2753–2762 (2015). https://doi.org/10.1557/jmr.2015.244

    Article  ADS  Google Scholar 

  27. H. Shang, J. Wang, Q. Liu, Synthesis and characterization of nanocrystalline BaFe12O19 obtained by using glucose as a fuel. Mater. Sci. Eng. A 456(1), 130–132 (2007). https://doi.org/10.1016/j.msea.2006.12.011

    Article  Google Scholar 

  28. S. Vadivelan, N. Victor Jaya, Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation method. Res. Phys. 6, 843–850 (2016). https://doi.org/10.1016/j.rinp.2016.07.013

    Article  Google Scholar 

  29. G. Kandregula, Structural properties of MgO nanoparticles: synthesized by co-precipitation technique. Int. J. Sci. Res. (IJSR) 3, 43–46 (2014)

    Google Scholar 

  30. J. Wang, Y. Wu, Y. Zhu, P. Wang, Formation of rod-shaped BaFe12O19 nanoparticles with well magnetic properties. Mater. Lett. 61(7), 1522–1525 (2007). https://doi.org/10.1016/j.matlet.2006.07.183

    Article  Google Scholar 

  31. I. Altman, I. Agranovski, M. Choi, On nanoparticle surface growth: MgO nanoparticle formation during a Mg particle combustion. Appl. Phys. Lett. 84, 5130–5132 (2004). https://doi.org/10.1063/1.1764937

    Article  ADS  Google Scholar 

  32. I.Y. Younis, S.S. El-Hawary, O.A. Eldahshan, M.M. Abdel-Aziz, Z.Y. Ali, Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci. Rep. 11, 16868 (2021). https://doi.org/10.1038/s41598-021-96377-6

    Article  ADS  Google Scholar 

  33. V. Šepelák et al., The mechanically induced structural disorder in barium hexaferrite, BaFe12O19, and its impact on magnetism. Faraday Discuss. 170, 121–135 (2014). https://doi.org/10.1039/C3FD00137G

    Article  ADS  Google Scholar 

  34. S. Liu, P. Gao, H. Zou, B. Qin, J. He, L. Deng, Large magnetoelectric effect in BaFe12O19-(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 particulate composite. Adv. Powder Mater. 1(3), 100022 (2022). https://doi.org/10.1016/j.apmate.2021.12.001

    Article  Google Scholar 

  35. R.S. Azis et al., Effect of ratio in ammonium nitrate on the structural, microstructural, magnetic, and AC conductivity properties of BaFe12O19. Materials (Basel) 11(11), 2190 (2018). https://doi.org/10.3390/ma11112190

    Article  ADS  Google Scholar 

  36. S. Maensiri, M. Sangmanee, A. Wiengmoon, Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res. Lett. (2009). https://doi.org/10.1007/s11671-008-9229-y

    Article  Google Scholar 

  37. P. Sharma, A. Kumar, A. Dube, Q. Li, D. Varshney, Structural and dielectric properties of La and Ni-doped M-type BaFe12O19 ceramics. AIP Conf. Proc. 1731(1), 140010 (2016). https://doi.org/10.1063/1.4948176

    Article  Google Scholar 

  38. J. Kreisel, G. Lucazeau, H. Vincent, Raman spectra and vibrational analysis of BaFe12O19 hexagonal ferrite. J. Solid State Chem. 137(1), 127–137 (1998). https://doi.org/10.1006/jssc.1997.7737

    Article  ADS  Google Scholar 

  39. W.Y. Zhao, P. Wei, X.Y. Wu, W. Wang, Q.J. Zhang, Lattice vibration characterization and magnetic properties of M-type barium hexaferrite with excessive iron. J. Appl. Phys. 103(6), 063902 (2008). https://doi.org/10.1063/1.2884533

    Article  ADS  Google Scholar 

  40. R. Pandey, L. Kumar Pradhan, S. Kumari, M. Kumar Manglam, S. Kumar, M. Kar, Surface magnetic interactions between Bi0.85La0.15FeO3 and BaFe12O19 nanomaterials in (1 − x)Bi0.85La0.15FeO3-(x)BaFe12O19 nanocomposites. J. Magnet. Magnet. Mater. 508, 166862 (2020). https://doi.org/10.1016/j.jmmm.2020.166862

    Article  Google Scholar 

  41. S. Mallesh, D. Prabu, V. Srinivas, Thermal stability and magnetic properties of MgFe2O4@ZnO nanoparticles. AIP Adv. 7(5), 056103 (2017). https://doi.org/10.1063/1.4975355

    Article  ADS  Google Scholar 

  42. A. Weibel, D. Mesguich, G. Chevallier, E. Flahaut, C. Laurent, Fast and easy preparation of few-layered-graphene/magnesia powders for strong, hard and electrically conducting composites. Carbon 136, 270–279 (2018). https://doi.org/10.1016/j.carbon.2018.04.085

    Article  Google Scholar 

  43. T. Athar, A. Deshmukh, W. Ahmed, Synthesis of MgO nanopowder via non aqueous sol-gel method. Adv. Sci. Lett. 5, 1–3 (2012). https://doi.org/10.1166/asl.2012.2190

    Article  Google Scholar 

  44. P. Dobrosz, S.J. Bull, S.H. Olsen, A.G. O’Neill, “Measurement of the residual macro and microstrain in strained Si/SiGe using Raman spectroscopy. MRS Online Proc. Lib. (OPL) 809, B3.4 (2004). https://doi.org/10.1557/PROC-809-B3.4

    Article  Google Scholar 

  45. R.J. Angel, M. Murri, B. Mihailova, M. Alvaro, Stress, strain and Raman shifts. Z. Kristallogr. Crystall. Mater. 234(2), 129–140 (2019). https://doi.org/10.1515/zkri-2018-2112

    Article  Google Scholar 

  46. F. Naaz, H. Dubey, C. Kumari, P. Lahiri, Structural and magnetic properties of MgFe2O4 nanopowder synthesized via co-precipitation route. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-2611-9

    Article  Google Scholar 

  47. P.J. Burke, Z. Bayindir, G.J. Kipouros, X-ray photoelectron spectroscopy (XPS) investigation of the surface film on magnesium powders. Appl. Spectrosc. 66(5), 510–518 (2012). https://doi.org/10.1366/11-06372

    Article  ADS  Google Scholar 

  48. B.C. Brightlin, S. Balamurugan, The effect of post annealing treatment on the citrate sol–gel derived nanocrystalline BaFe12O19 powder: structural, morphological, optical and magnetic properties. Appl. Nanosci. 6(8), 1199–1210 (2016). https://doi.org/10.1007/s13204-016-0531-1

    Article  ADS  Google Scholar 

  49. F. Mirza, H. Makwana, Synthesis and characterization of magnesium oxide (MgO) nanoparticles by co-precipitation method, 8(6), 7

  50. A. Rodrigues, S. Bauer, T. Baumbach, Effect of post-annealing on the chemical state and crystalline structure of PLD Ba0.5Sr0.5TiO3 films analyzed by combined synchrotron X-ray diffraction and X-ray photoelectron spectroscopy. Ceram. Int. 44(13), 16017–16024 (2018). https://doi.org/10.1016/j.ceramint.2018.06.038

    Article  Google Scholar 

  51. F. Alema, K. Pokhodnya, Dielectric properties of BaMg1∕3Nb2∕3O3 doped Ba0.45Sr0.55TiO3 thin films for tunable microwave applications. J. Adv. Dielect. 5(4), 1550030 (2015). https://doi.org/10.1142/S2010135X15500307

    Article  ADS  Google Scholar 

  52. R. Perez-Gonzalez et al., Highly efficient flexible CNT based supercapacitors fabricated with magnetic BaFe12O19 nanoparticles and biodegradable components. J. Phys. Chem. Solids 155, 110115 (2021). https://doi.org/10.1016/j.jpcs.2021.110115

    Article  Google Scholar 

  53. X. Zhang, Y. Zhang, Z. Yue, J. Zhang, Influences of sintering atmosphere on the magnetic and electrical properties of barium hexaferrites. AIP Adv. 9(8), 085129 (2019). https://doi.org/10.1063/1.5111422

    Article  ADS  Google Scholar 

  54. Q. Li et al., Vacancy-engineered Gd3+-substituted yttrium iron garnet with narrow ferrimagnetic linewidth and high Curie temperature. J. Alloy. Compd. 935, 168169 (2023). https://doi.org/10.1016/j.jallcom.2022.168169

    Article  Google Scholar 

  55. C. Liu, Y. Zhang, J. Jia, Q. Sui, N. Ma, P. Du, Multi-susceptibile single-phased ceramics with both considerable magnetic and dielectric properties by selectively doping. Sci. Rep. (2015). https://doi.org/10.1038/srep09498

    Article  Google Scholar 

  56. H. Cui, X. Wu, Y. Chen, J. Zhang, R.I. Boughton, Influence of copper doping on chlorine adsorption and antibacterial behavior of MgO prepared by co-precipitation method. Mater. Res. Bull. 61, 511–518 (2015). https://doi.org/10.1016/j.materresbull.2014.10.067

    Article  Google Scholar 

  57. K.S. Sánchez-Zambrano et al., XPS study on calcining mixtures of brucite with Titania. Materials (Basel) 15(9), 3117 (2022). https://doi.org/10.3390/ma15093117

    Article  ADS  Google Scholar 

  58. J. Lu, X. Wei, Y. Chang, S. Tian, Y. Xiong, Role of Mg in mesoporous MgFe2O4 for efficient catalytic ozonation of Acid Orange II. J. Chem. Technol. Biotechnol. 91(4), 985–993 (2016). https://doi.org/10.1002/jctb.4667

    Article  Google Scholar 

  59. A.A. Bezlepkin, S.P. Kuntsevich, Domain structure of hexaferrite BaFe12O19 near the Curie temperature. Phys. Solid State 62(7), 1179–1182 (2020). https://doi.org/10.1134/S1063783420070045

    Article  Google Scholar 

  60. K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, D. Kumar, Investigation of crystal structure, microstructure and low temperature magnetic behavior of Ce4+ and Zn2+ co-doped barium hexaferrites (BaFe12O19). RSC Adv. 8(35), 19600–19609 (2018). https://doi.org/10.1039/C8RA02455C

    Article  ADS  Google Scholar 

  61. V. Babu, P. Padaikathan, Structure and hard magnetic properties of barium hexaferrite with and without La2O3 prepared by ball milling. J. Magn. Magn. Mater. 241(1), 85–88 (2002). https://doi.org/10.1016/S0304-8853(01)00811-3

    Article  ADS  Google Scholar 

  62. S.N. Attyabi, S.A. Seyyed Ebrahimi, Z. Lalegani, B. Hamawandi, Reverse magnetization behavior investigation of Mn-Al-C-(α-Fe) nanocomposite alloys with different α-Fe content using first-order reversal curves analysis. Nanomaterials (2022). https://doi.org/10.3390/nano12193303

    Article  Google Scholar 

  63. M.K. Manglam, J. Mallick, S. Kumari, R. Pandey, M. Kar, Crystal structure and magnetic properties study on barium hexaferrite (BHF) and cobalt zinc ferrite (CZF) in composites. Solid State Sci. 113, 106529 (2021). https://doi.org/10.1016/j.solidstatesciences.2020.106529

    Article  Google Scholar 

  64. N.A. Algarou et al., Magnetic and microwave properties of SrFe12O19/MCe0.04Fe1.96O4 (M = Cu, Ni, Mn, Co and Zn) hard/soft nanocomposites. J. Market. Res. 9(3), 5858–5870 (2020). https://doi.org/10.1016/j.jmrt.2020.03.113

    Article  Google Scholar 

  65. Y. Lin, P. Kang, H. Yang, M. Liu, Preparation and characterization of BaFe12O19/Y3Fe5O12 composites. J. Alloy. Compd. 641, 223–227 (2015). https://doi.org/10.1016/j.jallcom.2015.03.265

    Article  Google Scholar 

  66. X. Shen, F. Song, J. Xiang, M. Liu, Y. Zhu, Y. Wang, Shape anisotropy, exchange-coupling interaction and microwave absorption of hard/soft nanocomposite ferrite microfibers. J. Am. Ceram. Soc. 95(12), 3863–3870 (2012). https://doi.org/10.1111/j.1551-2916.2012.05375.x

    Article  Google Scholar 

  67. M.K. Manglam, S. Kumari, S. Guha, S. Datta, M. Kar, Study of magnetic interaction between hard and soft magnetic ferrite in the nanocomposite. AIP Conf. Proc. 2220(1), 110020 (2020). https://doi.org/10.1063/5.0001220

    Article  Google Scholar 

  68. S. Datta, M.K. Manglam, S.K. Panda, A. Shukla, M. Kar, Investigation of crystal structure and magnetic properties in magnetic composite of soft magnetic alloy and hard magnetic ferrite. Phys. B 653, 414675 (2023). https://doi.org/10.1016/j.physb.2023.414675

    Article  Google Scholar 

  69. M.S. Seehra, S. Suri, V. Singh, Effects of Cu doping on the magnetism of CeO2 nanoparticles. J. Appl. Phys. 111(7), 07B516 (2012). https://doi.org/10.1063/1.3676223

    Article  Google Scholar 

  70. M.A. Almessiere, Y. Slimani, A. Baykal, Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceram. Int. 44(8), 9000–9008 (2018). https://doi.org/10.1016/j.ceramint.2018.02.101

    Article  Google Scholar 

  71. V.N. Dhage, M.L. Mane, M.K. Babrekar, C.M. Kale, K.M. Jadhav, Influence of chromium substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol–gel auto combustion method. J. Alloy. Compd. 509(12), 4394–4398 (2011). https://doi.org/10.1016/j.jallcom.2011.01.040

    Article  Google Scholar 

  72. Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceram. Int. 40(5), 7279–7284 (2014). https://doi.org/10.1016/j.ceramint.2013.12.068

    Article  Google Scholar 

  73. P. Xu, X. Han, M. Wang, Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique. J. Phys. Chem. C 111(16), 5866–5870 (2007). https://doi.org/10.1021/jp068955c

    Article  Google Scholar 

  74. N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens, B. Chaudret, Synthesis and magnetic properties of nickel nanorods. Nano Lett. 1(10), 565–568 (2001). https://doi.org/10.1021/nl0100522

    Article  ADS  Google Scholar 

  75. S. Phokha, J. Klinkaewnarong, S. Hunpratub, K. Boonserm, E. Swatsitang, S. Maensiri, Ferromagnetism in Fe-doped MgO nanoparticles. J. Mater. Sci. Mater. Electron. 27(1), 33–39 (2016). https://doi.org/10.1007/s10854-015-3713-9

    Article  Google Scholar 

  76. S. Azzaza et al., Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles. Mater. Chem. Phys. 143(3), 1500–1507 (2014). https://doi.org/10.1016/j.matchemphys.2013.12.006

    Article  Google Scholar 

  77. A. Almontasser, A. Parveen, Probing the effect of Ni, Co and Fe doping concentrations on the antibacterial behaviors of MgO nanoparticles. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-12081-z

    Article  Google Scholar 

  78. N. Pathak et al., Defect induced ferromagnetism in MgO and its exceptional enhancement upon thermal annealing: a case of transformation of various defect states. Phys. Chem. Chem. Phys. 19(19), 11975–11989 (2017). https://doi.org/10.1039/C7CP01776F

    Article  Google Scholar 

  79. N. Kumar, D. Sanyal, A. Sundaresan, Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy. Chem. Phys. Lett. 477, 360–364 (2009). https://doi.org/10.1016/j.cplett.2009.07.037

    Article  ADS  Google Scholar 

  80. F. Gao et al., First-principles study of magnetism driven by intrinsic defects in MgO. Solid State Commun. 149(21), 855–858 (2009). https://doi.org/10.1016/j.ssc.2009.03.010

    Article  ADS  Google Scholar 

  81. R.D. Widodo, A. Manaf, Physical characteristics and magnetic properties of BaFe12O19/SrTiO3 based composites derived from mechanical alloying. AIP Conf. Proc. 1725(1), 020098 (2016). https://doi.org/10.1063/1.4945552

    Article  Google Scholar 

  82. L. Cao, Z. Wang, Z. Ye, Y. Zhang, L. Zhao, Y. Zeng, Interface exchange coupling induced enhancements in coercivity and maximal magnetic energy product of BaFe12O19/Co3O4 nanocomposites. J. Alloy. Compd. 715, 199–205 (2017). https://doi.org/10.1016/j.jallcom.2017.04.284

    Article  Google Scholar 

  83. J. Sung Lee, J. Myung Cha, H. Young Yoon, J.-K. Lee, Y. Keun Kim, Magnetic multi-granule nanoclusters: a model system that exhibits universal size effect of magnetic coercivity. Sci. Rep. (2015). https://doi.org/10.1038/srep12135

    Article  Google Scholar 

  84. E. Suharyadi, A. Hermawan, D.L. Puspitarum, Crystal structure and magnetic properties of magnesium ferrite (MgFe2O4) nanoparticles synthesized by coprecipitation method. J. Phys. Conf. Ser. 1091(1), 012003 (2018). https://doi.org/10.1088/1742-6596/1091/1/012003

    Article  Google Scholar 

  85. N. Alghamdi et al., Structural, magnetic and toxicity studies of ferrite particles employed as contrast agents for magnetic resonance imaging thermometry. J. Magn. Magn. Mater. 497, 165981 (2020). https://doi.org/10.1016/j.jmmm.2019.165981

    Article  Google Scholar 

  86. Y. Yang, D. Huang, F. Wang, J. Shao, An investigation on microstructural, spectral and magnetic properties of Pr–Cu double-substituted M-type Ba–Sr hexaferrites. Chin. J. Phys. 57, 250–260 (2019). https://doi.org/10.1016/j.cjph.2018.11.012

    Article  Google Scholar 

  87. F. Fattouh et al., Structural and magnetic properties of hard-soft BaFe12O19/(Zn0.5Co0.5)Fe2O4 ferrites. J. Phys. Condens. Matter (2021). https://doi.org/10.1088/1361-648X/abf478

    Article  Google Scholar 

Download references

Acknowledgements

Authors declare their genuine gratitude and appreciation to Faculty of Science at Alexandria University in Egypt, Central Metallurgical Research & Development Institute (Helwan, Egypt) and Advanced Materials Science Lab at BAU (Debbieh, Lebanon).

Author information

Authors and Affiliations

Authors

Contributions

MS performed the measurements, processed the experimental data, and drafted the manuscript. Prof RA and Dr. KH were involved in planning and supervised the work. Prof RA and Dr. KH discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Khulud Habanjar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharrouf, M., Awad, R. & Habanjar, K. Investigation of the structural, morphological and magnetic properties of barium hexaferrite added with magnesium oxide nanoparticles. Appl. Phys. A 129, 807 (2023). https://doi.org/10.1007/s00339-023-07079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07079-x

Keywords

Navigation