Skip to main content
Log in

Structural, surface morphological and magnetic properties of Gd-doped BiFeO3 nanomaterials synthesised by EA chelated solution combustion method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Gd-doped BiFeO3 nanocrystalline multiferroic at 5 and 9% have been synthesised by solution combustion method using ethanolamine as a fuel. The preliminary structural investigations of the as synthesised samples were carried out using X-Ray diffraction and is found to be crystalline with single phase rhombohedral (R3C) structure with an average particle size of 34 nm. The surface morphology and the elemental analyses were carried out using FESEM and EDX, respectively, which reveals the fluffy agglomerated particles and confirms the presence of the desired elements. The TEM was employed to analyse the particle size which confirms the higher crystallinity of as prepared BiFeO3 and Gd-doped BiFeO3. Field dependence of magnetization was measured using vibrating sample magnetometer and the obtained results suggest that the doping of hetero-valent Gd3+ ions in BiFeO3 nanoparticles enrich the ferromagnetic behaviour. An enhancement in magnetization by increasing Gd doping is observed which also increases the saturation magnetization (MS) by 2.7 emu/g and 2.9 emu/g for the doping concentrations 0.5 and 0.9, respectively. Dopant concentration, phase purity and particle size achieved by the combustion method are considered as the possible causes for improvement of qualities aforementioned. The significant magnetic moments by Gd doping indicates that these materials can be adopted for the potential applications in magnetic sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. B. Jana, K. Ghosh, K. Rudrapal, P. Gaur, P.K. Shihabudeen, A.Y. Chaudhuri, Recent progess in flexible multiferroics. Front. Phys. 9, 822005 (2022)

    Article  Google Scholar 

  2. A. Kumar, D. Kaur, Magnetoelectric heterostructures for next-generation MEMS magnetic field sensing applications. J. All. Compn. 897, 163091 (2022)

    Article  Google Scholar 

  3. Q. Li, Y. Xuan, J. Wang, Exp. Therm. Fluid Sci. 30, 109 (2005)

    Article  Google Scholar 

  4. M. Abd, E. Aleem, A.M. Abu-dief, R.M. El-khatib, Appl. Organomet. Chem. 30, 1022 (2016)

    Article  Google Scholar 

  5. H. Naeimi, Z.S. Nazifi, J. Nanopart. Res. 15, 2026 (2013)

    Article  ADS  Google Scholar 

  6. J. Cao, Y. Wang, J. Yu, J. Xia, C. Zhang, D. Yin, U.O. Häfeli, J. Magn. Magn. Mater. 277, 165 (2004)

    Article  ADS  Google Scholar 

  7. A. Jordan, R. Scholz, P. Wust, H. Schirra, H. S. Thomas Schiestel, R. Felix, J. Magn. Magn. Mater. 194, 185, (1999)

  8. R.J.S. Lima, J.R. Jesus, K.O. Moura, C.B.R. Jesus, J.G.S. Duque, J. Appl. Phys. 123905, 1 (2013)

    Google Scholar 

  9. M. Amiri, K. Eskandari, M. Salavati-Niasari, Adv. Coll. Interface. Sci. 271, 101982 (2019)

    Article  Google Scholar 

  10. M. Salavati-Niasaria, D. Ghanbaria, F. Davar, J. Alloys Comp. 492, 570 (2010)

    Article  Google Scholar 

  11. J. Safari, L. Javadian, RSC Adv. 4, 48973 (2014)

    Article  ADS  Google Scholar 

  12. S. Chakraborty, S. Mukherjee, S. Mukherjee, J. Aust. Ceram. Soc. 51, 45 (2015)

    Google Scholar 

  13. V.A. Khomchenko, D.A. Kiselev, M. Kopcewicz, M. Maglione, V.V. Shvartsman, P. Borisov, W. Kleemann, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, R.M. Rubinger, N.A. Sobolev, J.M. Vieira, A.L. Kholkin, J. Magn. Magn. Mater. 321, 1692 (2009)

    Article  ADS  Google Scholar 

  14. S. Haider, A. Liaquat, M.S. Awan, N. Ul-Haq and A. Ul Haq, J. Austr. Ceram. Soc. 57, 643, (2021)

  15. A. Makridis, E. Myrovali, D. Sakellari, M. Angelakeris, Phys. Stat. Solidi B 257, 2000005 (2020)

    Article  ADS  Google Scholar 

  16. N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang, H. Olin, Y. Yang, Nano-Micro Lett. 12, 81 (2020)

    Article  ADS  Google Scholar 

  17. R. Ianos, I. Laz˘au, C. P˘acurariu, J. Mater. Sci. 44, 1016–1023, (2009)

  18. A. Panahi, R. Monsef, E.A. Dawi, A.S. Hussein, M. Salavati-Niasari, Sol. Energy 258, 372 (2023)

    Article  ADS  Google Scholar 

  19. C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401 (2005)

    Article  ADS  Google Scholar 

  20. D. Lee, M.G. Kim, S. Ryu, H.M. Jang, S.G. Lee, Appl. Phys. Lett. 86, 222903 (2005)

    Article  ADS  Google Scholar 

  21. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008)

    Article  ADS  Google Scholar 

  22. J. Liu, M. Li, L. Pei, J. Wang, B. Yu, X. Wang, X. Zhao, J. Alloy Compd. 493, 544 (2010)

    Article  Google Scholar 

  23. V.B. Naik, R. Mahendiran, Solid State Commun. 149, 754 (2009)

    Article  ADS  Google Scholar 

  24. G.L. Yuan, S.W. Or, Multiferroicity in polarized single phase BiSmFeO3 ceramics. JAP 100, 024109 (2006)

    ADS  Google Scholar 

  25. S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, “Controlling the fiber diameter during electrospinning,” Phys. Rev. Lett. 90, no. 14, Article ID 144502, pp. 1–4, (2003)

  26. R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, Magnetically separable BiFeO3 nanoparticles with a γ-Fe2O3 parasitic phase: controlled fabrication and enhanced visible-light photocatalytic activity. J. Mater. Chem. 21(46), 645–652 (2011)

    Article  Google Scholar 

  27. L. W. Martin, S. P. Crane, Y.-H. Chu et al., “Multiferroics and magnetoelectrics: thin films and nanostructures,” J. Phys. Condens. Matter, 20, no. 43, Article ID 434220, (2008)

  28. F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr. B 46(6), 698–702 (1990)

    Article  Google Scholar 

  29. B. Kumar Vashistha, J. S. Bangruwa, S. P. Gairola, and V. Verma, Integrated Ferroelectrics 194, 21, (2018).

Download references

Acknowledgements

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

TS: conceptualization, funding acquisition, writing–original draft, data curation. ATR: supervision, writing–review and editing, ARX: writing–original draft, investigation, validation, and methodology. MK: supervision, writing–review and editing.

Corresponding author

Correspondence to A. T. Ravichandran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindhu, T., Ravichandran, A.T., Xavier, A.R. et al. Structural, surface morphological and magnetic properties of Gd-doped BiFeO3 nanomaterials synthesised by EA chelated solution combustion method. Appl. Phys. A 129, 685 (2023). https://doi.org/10.1007/s00339-023-06951-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06951-0

Keywords

Navigation