Skip to main content
Log in

An effective mathematical method to achieve calibrated zinc oxide nanoparticle based gas sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO nanoparticle-based gas sensors were prepared and investigated to detect two different hazardous gases like SO\(_2\) and NH\(_3\). ZnO nanoparticles of two different sizes were prepared using cost effective sol–gel method. Both the devices show good responses towards the target gases at room temperature. The response is better for smaller nanoparticles. Both the devices show opposite responses towards SO\(_2\) and NH\(_3\) gases. Response curves were extensively analyzed by fitting them with a mathematical function to identify the parameters that can be used as a calibration tool for the device for a particular target gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  Google Scholar 

  2. N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001). https://doi.org/10.1023/A:1014405811371

    Article  Google Scholar 

  3. F. Hernandez-Ramirez, J.D. Prades, J.R. Morante, Metal oxide nanowire gas sensors. Sens. Mater. 21, 219–227 (2009)

    Google Scholar 

  4. C. Pijolat, Metal oxide gas sensors, in Chemical Sensors and Biosensors, ed. by R. Lalauze, pp. 93–125

  5. A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42, 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145

    Article  Google Scholar 

  6. J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys. Chem. Chem. Phys. 19, 6313–6329 (2017). https://doi.org/10.1039/c6cp07799d

    Article  Google Scholar 

  7. T. Lin, X. Lv, S. Li, Q. Wang, The morphologies of the semiconductor oxides and their gas-sensing properties. Sensors 17, 2779 (2017). https://doi.org/10.3390/s17122779

    Article  ADS  Google Scholar 

  8. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2017). https://doi.org/10.3390/s100302088

    Article  ADS  Google Scholar 

  9. J.H. Lee, Technological realization of semiconducting metal oxide-based gas sensors, in Gas Sensors Based on Conducting Metal Oxides: Basic Understanding, Technology and Applications. ed. by B. Nicolae, K. Schierbaum (Elsevier, New York, 2018), pp.167–216

    Google Scholar 

  10. K. Zhang, H. Zhang, S. Sun, Z. Yang, Y. Yuan, F. Wang, Enhanced gas sensing properties based on ZnO-decorated nickel oxide thin films for formaldehyde detection. J. Sci. Adv. Mater. 10, 373–378 (2018). https://doi.org/10.1166/sam.2018.2987

    Article  Google Scholar 

  11. V.M. Latyshev, T.O. Berestok, A.S. Opanasyuk, A.S. Kornyushchenko, V.I. Perekrestov, Nanostructured ZnO films for potential use in lpg gas sensors. J. Solid State Sci. 67, 109–113 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.02.010

    Article  ADS  Google Scholar 

  12. G. Nam, J.Y. Leem, Cadmium chloride-assisted ZnO nanorod regrowth for enhanced photoluminescence and ultraviolet sensing properties. Sci. Adv. Mater. 10, 397–400 (2018). https://doi.org/10.1166/sam.2018.3034

    Article  Google Scholar 

  13. V. Galstyan, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, Nanostructured ZnO chemical gas sensors. Ceram. Int. 41, 14239–14244 (2015)

    Article  Google Scholar 

  14. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas sensor applications: a review. Nano-Micro Lett. 7, 97–120 (2015)

    Article  Google Scholar 

  15. S. Leonardi, Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors 5, 17 (2017). https://doi.org/10.3390/chemosensors5020017

    Article  Google Scholar 

  16. J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of zno nanostructures using sol-gel method. Proc. Chem. 19, 211–216 (2016). https://doi.org/10.1016/j.proche.2016.03.095

    Article  Google Scholar 

  17. Y.K. Tseng, M.H. Chuang, Y.C. Chen, C.H. Wu, Synthesis of 1D, 2D, and 3D ZnO polycrystalline nanostructures using the sol-gel method. J. Nanotech. 2012, 1–8 (2012). https://doi.org/10.1155/2012/712850

    Article  Google Scholar 

  18. A.M. Pineda-Reyes, M.R. Herrera-Rivera, H. Rojas-Chávez, H. Cruz-Martínez, D.I. Medina, Recent advances in ZnO-based carbon monoxide sensors: role of doping. Sensors 21(13), 4425 (2021). https://doi.org/10.3390/s21134425

    Article  ADS  Google Scholar 

  19. M. Hjiri, L.E. Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B Chem. 196, 413–420 (2014)

    Article  Google Scholar 

  20. F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong, X. Deng, P. Tang, D. Li, Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods. Sens. Actuators B Chem. 241, 895–903 (2017). https://doi.org/10.1016/j.snb.2016.11.025

    Article  Google Scholar 

  21. A.J. Kulandaisamy, J.R. Reddy, P. Srinivasan, K.J. Babu, G.K. Mani, P. Shankar, J.B.B. Rayappan, Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of mg doping. J. Alloys Compd. 688, 422–429 (2016). https://doi.org/10.1016/j.jallcom.2016.07.050

    Article  Google Scholar 

  22. A.P. Rambu, N. Iftimie, V. Nica, S.M. Dobromir, Tascu, Efficient methane detection by Co doping of ZnO thin films. Superlattices Microstruct. 78, 61–70 (2015). https://doi.org/10.1016/j.spmi.2014.11.036

    Article  Google Scholar 

  23. K. Das, B. Jana, M. Pramanik, M. Mallick, J. Das, J. Sengupta, Chemically synthesized ZnO nanocrystal-based ethylene sensor operative at natural humid condition. Appl. Phys. A 128(962), 69–76 (2022). https://doi.org/10.1007/s00339-022-06110-x

    Article  Google Scholar 

  24. M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil, Modified zinc oxide thick film resistors as NH3 gas sensor. Sens. Actuators B 115, 128–133 (2006)

    Article  Google Scholar 

  25. P. Leangtanom, A. Wisitsoraat, K. Jaruwongrungsee, N. Chanlek, S. Phanichphant, V. Kruefu, Highly sensitive and selective ethylene gas sensors based on CeOx-SnO2 nanocomposites prepared by a co-precipitation method. Mater. Chem. Phys. 254, 123540 (2020)

    Article  Google Scholar 

  26. M.J. Resendiz, R.M.A. Corona, M.J.L. Fernandez, M.T. Zapata, H.A. Marquez, V.M. Ovando, Mathematical model of Boltzmann’s sigmoidal equation applicable to the set up of the RF magnetron co-sputtering in thin films deposition of BaSr-1xTiO3. Bull. Mater. Sci 40, 1043 (2017)

    Article  Google Scholar 

  27. H. Wu, Z. Ma, Z. Lin, H. Song, S. Yan, Y. Shi, High-sensitive ammonia sensors based on tin monoxide nanoshells. Nanomaterials 9, 388 (2019)

    Article  Google Scholar 

  28. J.M. Anglada, M.T. Martins-Costa, J.S. Francisco, M.F. Ruiz-Lopez, Triplet state promoted reaction of SO2 with H2O by competition between proton coupled electron transfer (pcet) and hydrogen atom transfer (hat) processes. Phys. Chem. Chem. Phys. 21, 9779 (2019)

    Article  Google Scholar 

  29. Q. Zhoua, W. Zengc, W. Chenb, L. Xua, R. Kumard, A. Umare, High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sens. Actuators B Chem. 298, 126870 (2019)

    Article  Google Scholar 

  30. V. Dhingra, S. Kumar, R. Kumar, A. Garg, A. Chowdhuri, Room temperature SO2 and H2 gas sensing using hydrothermally grown GO-ZnO nanorod composite films. Mater. Res. Express 7, 065012 (2020)

    Article  ADS  Google Scholar 

  31. P. Nakarungseea, S. Srirattanapibula, C. Issrob, I.M. Tangc, S. Thongmeea, High performance Cr doped ZnO by UV for NH3 gas sensor. Sens. Actuators A 314, 112230 (2020)

    Article  Google Scholar 

  32. G.S.T. Rao, D.T. Rao, Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature. Sens. Actuators B 55, 166–169 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Higher Education, Science & Technology and Biotechnology, Govt. of West Bengal, India. The authors wish to acknowledge the Department of Physics, Jadavpur University, Kolkata for providing instrumental facilities like XRD and FESEM funded by the DST FIST Programme.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions from all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Arnab Gangopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangopadhyay, A., Sarkar, A., Jana, B. et al. An effective mathematical method to achieve calibrated zinc oxide nanoparticle based gas sensor. Appl. Phys. A 129, 660 (2023). https://doi.org/10.1007/s00339-023-06935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06935-0

Keywords

Navigation