Skip to main content
Log in

Study of AC conductivity and dielectric relaxation in Bi2Omodified lithium lead silicate glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research work, we have prepared lithium lead silicate glasses with varying concentrations of bismuth by following the melt-quench technique. The prepared samples are investigated by ac conductivity and electric modulus formalisms in the frequency and temperature ranges of 10–1–107 Hz and 433–533 K, respectively. To check the applicability of various charge transport mechanisms in these prepared samples, the experimental data of ac conductivity was fitted with Jonscher’s power law. It was found to be satisfied in the studied range of temperature and frequency. AC conductivity helps to calculate all the parameters viz.; dc conductivity, activation energy, frequency exponent parameter, and the cross over frequency. The value of ac conductivity increases with Bi2O3 concentration up to 30 mol% due to mobile lithium ions and the network modifier BiO6 unit. Thereafter, when the ratio of Bi2O3/Li2O becomes greater than unity, the conductivity values decrease due to the blocking effect of the bismuth ions in the network, forming the BiO3 pyramidal unit. In the current research, the correlated barrier hopping model is found to be suitable for explaining the ac conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data analyzed in this work is included in this article.

References

  1. V. Prasad, B. Suresh, M. Kostrzewa, Y. Gandhi, A. Ingram, A.S. Sesha Reddy, V. Ravi Kumar, N. Veeraiah, Dielectric dispersion, dipolar relaxation, and a.c. conduction phenomena of NiO doped lead-bismuth silicate glass system. J. Non-Cryst. Solids 500, 460–467 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.09.002

    Article  ADS  Google Scholar 

  2. S.P. Singh, B. Karmakar, Bismuth oxide and Bismuth oxide doped glasses for optical and photonic applications, in Bismuth: Characteristics, Production and Applications. Materials Science and Technologies (Nova, Hauppauge, New York, 2012), pp. 229–249. http://cgcri.csircentral.net/1384/1/SPS-Book_Chapter_.pdf

  3. L. Srinivasa Rao, AC conductivity and polarization phenomenon of Li2O-MoO3-B2O3:V2O5 glasses. J. Alloys. Compd. 787, 1280–1289 (2019). https://doi.org/10.1016/j.jallcom.2019.02.122

    Article  Google Scholar 

  4. R. Bala, A. Agrawal, S. Sanghi, S. Gaur, S. Rani, Investigation of third order nonlinear optical parameters and optical limiting behavior of PbO·Bi2O3·Ga2O3 glasses. Appl. Phys. A 128, 1036 (2022). https://doi.org/10.1007/s00339-022-06169-6

    Article  ADS  Google Scholar 

  5. E.M. Abou Hussein, A.M. Madbouly, N.A. El-Alaily, Gamma ray interaction of optical, chemical, physical behavior of bismuth silicate glasses and their radiation shielding proficiency using Phy-X/PSD program. J. Non-Cryst. Solids 570, 121021 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121021

    Article  Google Scholar 

  6. N.M. Bobkova, Properties and structure of bismuth borate glasses (review). Glass Ceram. 72, 360–365 (2016). https://doi.org/10.1007/s10717-016-9790-2

    Article  Google Scholar 

  7. A. Yadav, S. Khasa, A. Hooda, M.S. Dahiya, A. Agarwal, P. Chand, EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions. Spectrochim. Acta A 157, 129–137 (2016). https://doi.org/10.1016/j.saa.2015.12.027

    Article  ADS  Google Scholar 

  8. I.S. Mustafa, N.A.N. Razali, N.Z.N. Azman, N.Z. Yahaya, M.Z.M. Zaini, N.L. Rusli, M.B. Nizamani, H.M. Kamari, Comprehensive study of electronic polarizability and band gap of B2O3–Bi2O3–ZnO–SiO2 glass network. J. Adv. Dielectr. 7, 1750031 (2017). https://doi.org/10.1142/S2010135X1750031X

    Article  ADS  Google Scholar 

  9. S.H. Elazoumi, H.A.A. Sideka, Y.S. Rammah, R. El-Mallawany, M.K. Halimah, K.A. Matoria, M.H.M. Zaida, Effect of PbO on optical properties of tellurite glass. Results Phys. 8, 16–25 (2018). https://doi.org/10.1016/j.rinp.2017.11.010

    Article  ADS  Google Scholar 

  10. R. Bala, A. Agarwal, S. Sanghi, S. Khasa, Influence of SiO2 on the structural and dielectric properties ZnO‧Bi2O3‧SiO2 glasses. J. Integr. Sci. Technol. 3(1), 6 (2015). https://www.researchgate.net/publication/310752054_Influence_of_SiO2_on_the_structural_and_dielectric_properties_of_ZnO_Bi2O3_SiO2_glasses

  11. K. Nagao, M. Shigeno, A. Inoue, M. Deguchi, H. Kowada, C. Hotehama, A. Sakuda, M. Tatsumisago, A. Hayashi, Lithium-ion conductivity and crystallization temperature of multicomponenet oxide glass electrolytes. J. Non-Cryst. Solids. 14, 100089 (2022). https://doi.org/10.1016/j.nocx.2022.100089

    Article  Google Scholar 

  12. V. Montouillout, H. Fan, L.D. Campo, S. Ory, A. Rakhmatullin, F. Fayon, M. Malki, Ionic conductivity of lithium borate glasses and local structure probed by high resolution solid-sate NMR. J. Non-Cryst. Solids 484, 57–64 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.01.020

    Article  ADS  Google Scholar 

  13. B. Suresh, M. Srinivasa Reddy, J. Ashok, A.S. Sesha Reddy, P. Venkateswara Rao, V. Ravi Kumar, N. Veeraiah, Enhancement of orange emission of Co2+ ions with Bi3+ ions in lead silicate glasses. J. Lumin. 172, 47–52 (2016). https://doi.org/10.1016/j.jlumin.2015.11.018

    Article  Google Scholar 

  14. Y. Lee, J.H. Lee, S.H. Honga, Y. Park, Li-ion conductivity in Li2O–B2O3–V2O5 glass system. Solid State Ion. 175(1–4), 687–690 (2004). https://doi.org/10.1016/j.ssi.2004.08.024

    Article  ADS  Google Scholar 

  15. Y.B. Saddeek, G.Y. Mohamed, H.S. Hassan, A.M.A. Mostafa, G. Abd elfadeel, Effect of gamma irradiation on the FTIR of cement kiln dust–bismuth borate glasses. J. Non-Cryst. Solids 419, 110–117 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.03.021

    Article  ADS  Google Scholar 

  16. S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J. Alloys Comp. 597, 110–118 (2014). https://doi.org/10.1016/j.jallcom.2014.01.211

    Article  Google Scholar 

  17. S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Influence of Bi2O3 on physical, electrical and thermal properties of Li2O·ZnO·Bi2O3·SiO2 glasses. J. Alloys Comp. 619, 659–666 (2015). https://doi.org/10.1016/j.jallcom.2014.09.029

    Article  Google Scholar 

  18. S. Bale, S. Rahman, Glass structure and transport properties of Li2O containing zinc bismuthate glasses. Opt. Mater. 31, 333–337 (2008). https://doi.org/10.1016/j.optmat.2008.05.007

    Article  ADS  Google Scholar 

  19. S. Bale, S. Rahman, A.M. Awasthi, V. Sathe, Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3–ZnO–B2O3 glasses. J. Alloys Compd. 460, 699–703 (2008). https://doi.org/10.1016/j.jallcom.2007.06.090

    Article  Google Scholar 

  20. S. Bale, S. Rahman, Optical absorption and EPR studies on (70–x)Bi2O3xLi2O–30(ZnO–B2O3)(0 ⩽ x ⩽ 20)glasses. J. Non Cryst. Solids 355, 2127–2133 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.06.039

    Article  ADS  Google Scholar 

  21. S. Bale, N. Srinivasa Rao, S. Rahman, Spectroscopic studies of Bi2O3–Li2O–ZnO–B2O3 glasses. Solid State Sci. 10, 326–331 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.09.017

    Article  ADS  Google Scholar 

  22. S. Bale, M. Purnima, Ch. Srinivasu, S. Rahman, Vibrational spectra and structure of bismuth based quaternary glasses. J. Alloys Compd. 457, 545–548 (2008). https://doi.org/10.1016/j.jallcom.2007.03.100

    Article  Google Scholar 

  23. S. Chauhan, R. Bala, S. Rani, S. Gaur, Investigation of structural and optical properties of lithium lead-bismuth silicate glasses. J. Mater Sci: Mater Electron 33(15), 12371–12383 (2022). https://doi.org/10.1007/s10854-022-08194-w

    Article  Google Scholar 

  24. B. Eraiah, Electronic-ionic conductivity of lithium Vanado-phosphate glasses. Mapana J. Sci. 14(1), 9–14 (2015). https://doi.org/10.12723/mjs.32.2

    Article  Google Scholar 

  25. Y.H. Rim, M. Kim, C.G. Baek, Y.S. Yang, Effect of Li content in ion conductivity of lithium silicate glasses. J. Alloy. Comp. 827, 154253 (2020). https://doi.org/10.1016/j.jallcom.2020.154253

    Article  Google Scholar 

  26. S.K. Deshpande, V.K. Shrikhande, M.S. Jogad, P.S. Goyal, G.P. Kothiyal, Conductivity studies of lithium zinc silicate glasses with varying lithium contents. Bull. Mater. Sci. 30, 497–502 (2007). https://doi.org/10.1007/s12034-007-0078-6

    Article  Google Scholar 

  27. S. Chauhan, R. Bala, S. Gaur, S. Rani, Effect of Bi2O3 on structural and optical properties of Li2O·PbO·Bi2O3·B2O3 glasses. J. Mater Sci: Mater Electron 33(15), 22835–22850 (2022). https://doi.org/10.1007/s10854-022-08194-w

    Article  Google Scholar 

  28. A. Yadav, M.S. Dahiya, P. Narwal, A. Hooda, A. Agarwal, S. Khasa, Electrical characterization of lithium bismuth borate glasses containing cobalt/vanadium ions. Solid State Ion. 312, 21–31 (2014). https://doi.org/10.1016/j.ssi.2017.10.006

    Article  Google Scholar 

  29. T. Annapurna, M. Kostrzewa, A.S. Sesha Reddy, A. Ingram, J. Ashok, V. Ravi Kumar, N. Veeraiah, Polaronic conduction and dielectric relaxation dynamics in V2O5 added lead bismuth silicate glass system. J. Non-Cryst. Solids 528, 119746 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119746

    Article  Google Scholar 

  30. K.S. Rao, D.M. Prasad, P.M. Krishna, B.H. Bindu, K. Suneetha, Frequency and temperature dependence of electrical properties of barium and gadolinium substituted SrBi2Nb2O9 ceramics. J. Mater. Sci. 42, 7363–7374 (2007). https://doi.org/10.1007/s10853-007-1555-4

    Article  ADS  Google Scholar 

  31. A.R. James, S. Balaji, S.B. Krupanidhi, Impedance-fatigue correlated studies on SrBi2Ta2O9. Mater. Sci. Eng. B 64(3), 149–156 (1999). https://doi.org/10.1016/S0921-5107(99)00039-2

    Article  Google Scholar 

  32. E.M. Abou Hussein, T.D. Abd Elaziz, N.A. El Alaily, Effect of gamma radiation on some optical and electrical properties of lithium bismuth silicate glasses. J. Mater. Sci. Mater. Electron. 30, 12054–12064 (2019). https://doi.org/10.1007/s10854-019-01563-y

    Article  Google Scholar 

  33. S. Sindhu, S. Sanghi, A. Agarwal, V.P. Seth, N. Kishore, Effect of Bi2O3 content on the optical band gap, density and electrical conductivity of MO·Bi2O3·B2O3 (M = Ba, Sr) glasses. Mater. Chem. Phys. 90, 83–89 (2005). https://doi.org/10.1016/j.matchemphys.2004.10.013

    Article  Google Scholar 

  34. M.M. El-Desoky, Dielectric Behaviour And Ac Conductivity Of Sodium Borate Glass Containing CoO. J. Phys. Chem. Solids 59, 1659–1666 (1998). https://doi.org/10.1016/S0022-3697(97)00212-6

    Article  ADS  Google Scholar 

  35. R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J. Appl. Phys. 112, 083701 (2012). https://doi.org/10.1063/1.4759356

    Article  ADS  Google Scholar 

  36. S. Dahiya, R. Punia, A. Singh, A.S. Maan, S. Murugavel, DC conduction and electric modulus Formulation of lithium doped bismuth zinc vanadate semiconducting glassy system. J. Am. Ceram. Soc. 98(9), 2776–2783 (2015). https://doi.org/10.1111/jace.13661

    Article  Google Scholar 

  37. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D Appl. Phys. 32(14), R57 (1999). https://doi.org/10.1088/0022-3727/32/14/201

    Article  ADS  Google Scholar 

  38. M. Dult, R.S. Kundu, S. Murugavel, R. Punia, N. Kishore, Conduction mechanism in bismuth silicate glasses containing titanium. Phys. B Condens. Matter 452, 102–107 (2014). https://doi.org/10.1016/j.physb.2014.07.004

    Article  ADS  Google Scholar 

  39. H. Jain, J.N. Mundy, Analysis of ac conductivity of glasses by a power law relationship. J. Non-Cryst. Solids 91, 315–323 (1987). https://doi.org/10.1016/S0022-3093(87)80342-3

    Article  ADS  Google Scholar 

  40. S.R. Elliot, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987). https://doi.org/10.1080/00018738700101971

    Article  ADS  Google Scholar 

  41. N.F. Mott, E.A. Davis, Disordered Materials: Electronic processes in Non-Crystalline Materials, vol. 207, 2nd edn (Clarendon, Oxford University Press, New York, 1979), p. 4436. https://doi.org/10.1126/science.207.4436.1196.b

  42. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969). https://doi.org/10.1080/00018736900101267

    Article  ADS  Google Scholar 

  43. S.R. Elliot, Temperature dependence of a.c. conductivity of chalcogenide glasses. Philos. Mag. B 37, 553–560 (1978). https://doi.org/10.1080/01418637808226448

    Article  ADS  Google Scholar 

  44. S. Dahiya, R. Punia, S. Murugavel, A.S. Maan, Conductivity and modulus formulation in lithium modified bismuth zinc borate glasses. Solid State Sci. 55, 98–105 (2016). https://doi.org/10.1016/j.solidstatesciences.2016.02.013

    Article  ADS  Google Scholar 

  45. R. Bala, A. Aggrawal, S. Sanghi, Sanjay, Electrical characterization and dielectric behavior of PbO·Bi2O3·Ga2O3 glasses. AIP Conf. Proc. 2142, 070032 (2019). https://doi.org/10.1063/1.5122424

    Article  Google Scholar 

  46. R. Punia, R.S. Kundu, S. Murugavel, N. Kishore, Hopping conduction in bismuth modified zinc vanadate glasses: an applicability of Mott’s model. J. Appl. Phys. 112, 113716 (2012). https://doi.org/10.1063/1.4768898

    Article  ADS  Google Scholar 

  47. A. Dutta, T.P. Sinha, P. Jeno, S. Adak, Ac conductivity and dielectric relaxation in ionically conducting soda–lime–silicate glasses. J. Non-Cryst. Solids 354(33), 3952–3957 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.05.028

    Article  ADS  Google Scholar 

  48. S.W. Martin, C.A. Angell, Dc and ac conductivity in wide composition range Li2O P2O5 glasses. J. Non-Cryst. Solids 83, 185–207 (1986). https://doi.org/10.1016/0022-3093(86)90067-0

    Article  ADS  Google Scholar 

  49. R. Bergman, General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88, 1356 (2000). https://doi.org/10.1063/1.373824

    Article  ADS  Google Scholar 

  50. R.M.M. Morsi, S. Ibrahim, S.A. Naf, M.M. Morsi, Effect of alkaline earth metal oxides on the dielectric, structural and physico-chemical properties of lithium–zinc–lead-borates. J. Mater. Sci. Mater. Electron. 27, 4147–4156 (2016). https://doi.org/10.1007/s10854-016-4276-0

    Article  Google Scholar 

  51. M.B. Hossen, A.K.M.A. Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J. Adv. Ceram. 4(3), 217–225 (2015). https://doi.org/10.1007/s40145-015-0152-2

    Article  Google Scholar 

  52. L.F. Maia, A.C.M. Rodrigues, Electrical conductivity and relaxation frequency of lithium borosilicate glasses. Solid State Ion. 168, 87–92 (2004). https://doi.org/10.1016/j.ssi.2004.02.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to GJUST, Hisar for providing the broadband dielectric/impedance spectrometer novocontrol technology for dielectric measurements.

Author information

Authors and Affiliations

Authors

Contributions

SC conceptualization, investigation, methodology, writing—original draft. RB supervision, writing—review and editing. SG methodology, writing—review and editing, DS writing—review and editing, SR data curation. RP formal analysis.

Corresponding author

Correspondence to Rajni Bala.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest for declaration.

Ethic statement

The contents of our research paper “Study of AC conductivity and dielectric relaxation in Bi2O3 modified lithium lead silicate glasses” are new and we have synthesized these glasses using melt-quenching technique The glasses have been found to have good electrical properties and can be utilized as potential candidate for solid-state batteries or supercapacitors. It is certified that the work is completely original and has not been published/submitted for publication elsewhere. We will follow all the norms of the publication, such as copyrights etc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Bala, R., Gaur, S. et al. Study of AC conductivity and dielectric relaxation in Bi2Omodified lithium lead silicate glasses. Appl. Phys. A 129, 521 (2023). https://doi.org/10.1007/s00339-023-06805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06805-9

Keywords

Navigation