Skip to main content
Log in

Influence of single and double interlayers on the electrical and current transport mechanism of Mo/n-Si Schottky diode and its microstructural and chemical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study examined the role of Si3N4 and ZrO2 on the microstructural and electrical properties of Mo/n-Si Schottky diodes (SD) as single and double insulating layers between the Mo metal and Si semiconductor. Various characterization techniques and I–V measurements were used to analyze their optical, microstructural, chemical, morphological, and electrical properties at room temperature. The direct optical bandgaps of double interlayer films are higher than the single-layer films. XRD, FESEM, EDX, XPS, and AFM analysis revealed the Si3N4 and ZrO2 films formation at the interface. The electrical properties of the Mo/n-Si (MS), Mo/Si3N4/n-Si (MIS), Mo/ZrO2/n-Si (MIS) Schottky diodes (SD) are associated with the properties of the Mo/Si3N4/ZrO2/n-Si (MIIS) Schottky diode (SD). In comparison to the MS Schottky diode (SD), the MIS and MIIS SDs demonstrate outstanding rectifying capability and low reverse leakage current. The MIIS SD achieves the highest barrier height (BH) than the MISs and MS SDs, which has led to the BH being adjusted by the insulating layers. Furthermore, the BH, n, and series resistance were analyzed using TE, Cheung’s, Norde’s, and the Chattopadhyay methods were similar, indicating consistency and validity. The current transport mechanism was investigated based on the forward-bias I–V plot. Finally, the reverse bias I–V performance of MS SD is controlled by Schottky emission mechanism. The MIS and MIIS SD were controlled by a Poole–Frenkel mechanism at lower regions and Schottky emission mechanism at higher regions. Thus, the MIIS double interlayer SD is appropriate for high-performance electrical and optoelectronic device applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

Abbreviations

TE:

Thermionic emission

MS:

Metal-semiconductor

MIS:

Metal-insulator-semiconductor

MIM:

Metal-insulator-metal

MIS:

Metal-insulator-semiconductor

MIIS:

Metal-insulator-insulator-semiconductor

XRD:

X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

FESEM:

Field emission scanning electron microscopy

AFM:

Atomic force microscopy

EDX:

Energy-dispersive X-ray spectroscopy

SBDs:

Schottky barrier diodes

SD:

Schottky diode

BH:

Barrier height

n:

Ideality factor

References

  1. P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, V. Balasubramani, P. Balraju, Zirconia modified nanostructured MoO3 thin films deposited by spray pyrolysis technique for Cu/MoO3-ZrO2/p-Si structured Schottky barrier diode application. Optik 199, 163351 (2019)

    ADS  Google Scholar 

  2. H.K. Khanfar, A.F. Qasrawi, Y.A. Zakarneh, N.M. Gasanly, Design and applications of YB/GA2SE3/C Schottky barrier. IEEE Sens. J. 17, 4429–4434 (2017)

    ADS  Google Scholar 

  3. S. Riazimehr, S. Kataria, R. Bornemann, P. Haring Bolívar, F.J.G. Ruiz, O. Engström, A. Godoy, M.C. Lemme, High photocurrent in gated graphene-silicon hybrid photodiodes. ACS Photonics 4, 1506–1514 (2017)

    Google Scholar 

  4. A. Di Bartolomeo, F. Giubileo, A. Grillo, G. Luongo, L. Iemmo, F. Urban, L. Lozzi, D. Capista, M. Nardone, M. Passacantando, Bias tunable photocurrent in metal-insulator-semiconductor heterostructures with photoresponse enhanced by carbon nanotubes. Nanomaterials (Basel) 9, 1598 (2019)

    Google Scholar 

  5. M. Balaji, J. Chandrasekaran, M. Raja, R. Marnadu, M. Ramamurthy, M. Shkir, Fabrication of ON/OFF switching response based on n-Ni-doped MoO3/p-Si junction diodes using Ni-MoO3 thin films as n-type layer prepared by JNS pyrolysis technique. Appl. Phys. A 126, 216 (2020)

    ADS  Google Scholar 

  6. M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, A.C. Ferrari, Vertically illuminated, resonant cavity enhanced, graphene-silicon Schottky photodetectors. ACS Nano 11, 10955–10963 (2017)

    Google Scholar 

  7. L. Qian, Y. Sun, M. Wu, D. Xie, L. Ding, G. Shi, A solution-processed high-performance phototransistor based on a perovskite composite with chemically modified graphenes. Adv. Mater. 29, 1606175 (2017)

    Google Scholar 

  8. V. Manjunath, V. Rajagopal Reddy, P.R. Sekhar Reddy, V. Janardhanam, C.-J. Choi, Electrical and frequency-dependent properties of Au/Sm2O3/n-GaN MIS junction with a high-k rare-earth Sm2O3 as interlayer. Curr. Appl. Phys. 17, 980–988 (2017)

    ADS  Google Scholar 

  9. A. Ashery, M.M.M. Elnasharty, Dielectric assessment of epitaxially grown Al/SiO2/Si heterojunction. SILICON 11, 1875–1883 (2019)

    Google Scholar 

  10. Y. Liu, J. Yu, P.T. Lai, Investigation of WO3/ZnO thin-film heterojunction-based Schottky diodes for H2 gas sensing. Int. J. Hydrogen Energy 39, 10313–10319 (2014)

    Google Scholar 

  11. H. Altuntas, A. Bengi, T. Asar, U. Aydemir, B. Sarıkavak, Y. Ozen, Ş Altındal, S. Ozcelik, Interface state density analyzing of Au/TiO2(rutile)/n–Si Schottky barrier diode. Surf. Interface Anal. 42, 1257–1260 (2010)

    Google Scholar 

  12. A. Turut, D.E. Yıldız, A. Karabulut, İ Orak, Electrical characteristics of atomic layer deposited Au/Ti/HfO2/n-GaAs MIS diodes in the wide temperature range. J. Mater. Sci. Mater. Electron. 31, 7839–7849 (2020)

    Google Scholar 

  13. H.G. Çetinkaya, D.E. Yıldız, Ş Altındal, On the negative capacitance behavior in the forward bias of Au/n–4H–SiC (MS) and comparison between MS and Au/TiO2/n–4H–SiC (MIS) type diodes both in dark and under 200 W illumination intensity. Int. J. Mod. Phys. B 29, 1450237 (2014)

    ADS  Google Scholar 

  14. D.E. Yıldız, A. Karabulut, İ Orak, A. Turut, Effect of atomic-layer-deposited HfO2 thin-film interfacial layer on the electrical properties of Au/Ti/n-GaAs Schottky diode. J. Mater. Sci. Mater. Electron. 32, 10209–10223 (2021)

    Google Scholar 

  15. A. Konar, D. Jena, Tailoring the carrier mobility of semiconductor nanowires by remote dielectrics. J. Appl. Phys. 102, 123705 (2007)

    ADS  Google Scholar 

  16. J. Weng, S.-P. Gao, Structures and characteristics of atomically thin ZrO2 from monolayer to bilayer and two-dimensional ZrO2–MoS2 heterojunction. RSC Adv. 9, 32984–32994 (2019)

    ADS  Google Scholar 

  17. T. Tunç, İ Uslu, Fabrication and characterization of boron-doped yttria-stabilized zirconia nanofibers. Polym. Eng. Sci. 53, 963–969 (2013)

    Google Scholar 

  18. S. Zhou, Z. Fang, H. Ning, W. Cai, Z. Zhu, J. Wei, X. Lu, W. Yuan, R. Yao, J. Peng, Bias stability enhancement in thin-film transistor with a solution-processed ZrO2 dielectric as gate insulator. Appl. Sci. 8, 806 (2018)

    ADS  Google Scholar 

  19. G. Koo, W. Lee, B. Kil, H. Ahn, B.W. Cho, S.H. Han, Enhancement of photoconversion efficiency of ZnO nanorod-based dye-sensitized solar cells in presence of ZrO2 thin energy barrier. J. Nanosci. Nanotechnol. 11, 4476–4479 (2011)

    Google Scholar 

  20. G.Q. Liu, H.T. Kuo, R.S. Liu, C.H. Shen, D.S. Shy, X.K. Xing, J.M. Chen, Study of electrochemical properties of coating ZrO2 on LiCoO2. J. Alloy. Compd. 496, 512–516 (2010)

    Google Scholar 

  21. S. Kumar, A.K. Ojha, Oxygen vacancy induced photoluminescence properties and enhanced photocatalytic activity of ferromagnetic ZrO2 nanostructures on methylene blue dye under ultra-violet radiation. J. Alloy. Compd. 644, 654–662 (2015)

    Google Scholar 

  22. J.Y. Koo, Y. Lim, Y.B. Kim, D. Byun, W. Lee, Electrospun yttria-stabilized zirconia nanofibers for low-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 42, 15903–15907 (2017)

    Google Scholar 

  23. A.S. Mokrushin, E.P. Simonenko, N.P. Simonenko, K.A. Bukunov, V.G. Sevastyanov, N.T. Kuznetsov, Gas-sensing properties of nanostructured CeO2-ZrO2 thin films obtained by the sol-gel method. J. Alloy. Compd. 773, 1023–1032 (2019)

    Google Scholar 

  24. K.S. Mohan, A. Panneerselvam, J. Chandrasekaran, R. Marnadu, M. Shakir, An in-depth examination of optoelectrical properties of In-Yb2O3 thin films and fabricated Al/In-Yb2O3/p-Si (MIS) heterojunction diodes. Appl. Nanosci. 11, 1617–1635 (2021)

    ADS  Google Scholar 

  25. R. Ramaseshan, S. Sundarrajan, R. Jose, S. Ramakrishna, Nanostructured ceramics by electrospinning (2007)

  26. O. Saligheh, R. Khajavi, M.E. Yazdanshenas, A. Rashidi, Production and characterization of zirconia (ZrO2) ceramic nanofibers by using electrospun poly(vinyl alcohol)/zirconium acetate nanofibers as a precursor. J. Macromol. Sci. Part B 55, 605–616 (2016)

    ADS  Google Scholar 

  27. S.M. Razavi, S. Tahmasb Pour, P. Najari, New GaN based HEMT with Si3N4 or un-doped region in the barrier for high power applications. Superlattices Microstruct. 118, 221–229 (2018)

    ADS  Google Scholar 

  28. Z. Zhang, G. Yu, X. Zhang, S. Tan, D. Wu, K. Fu, W. Huang, Y. Cai, B. Zhang, 16.8 A/600 V AlGaN/GaN MIS-HEMTs employing LPCVD-Si3N4 as gate insulator. Electron. Lett. 51, 1201–1203 (2015)

    ADS  Google Scholar 

  29. D.A. Zakheim, W.V. Lundin, A.V. Sakharov, E.E. Zavarin, P.N. Brunkov, E.Y. Lundina, A.F. Tsatsulnikov, S.Y. Karpov, Dependence of leakage current in Ni/Si3N4/n-GaN Schottky diodes on deposition conditions of silicon nitride. Semicond. Sci. Technol. 33, 115008 (2018)

    Google Scholar 

  30. E. Kim, N. Soejima, Y. Watanabe, M. Ishiko, T. Kachi, Electrical properties of metal-insulator-semiconductor capacitors on freestanding GaN substrate. Jpn. J. Appl. Phys. 49, 04DF08 (2010)

    Google Scholar 

  31. J. Bauer, Optical properties, band gap, and surface roughness of Si3N4. Phys. Status Solidi (a) 39, 411–418 (1977)

    ADS  Google Scholar 

  32. S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D.S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, J. Wu, Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185–3190 (2014)

    ADS  Google Scholar 

  33. F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015)

    ADS  Google Scholar 

  34. H.-C. Liu, X.-G. Tang, Q.-X. Liu, Y.-P. Jiang, W.-H. Li, X.-B. Guo, Z.-H. Tang, Bipolar resistive switching behavior and conduction mechanisms of composite nanostructured TiO2/ZrO2 thin film. Ceram. Int. 46, 21196–21201 (2020)

    Google Scholar 

  35. R. Coloma Ribera, R.W.E. van de Kruijs, J.M. Sturm, A.E. Yakshin, F. Bijkerk, Intermixing and thermal oxidation of ZrO2 thin films grown on a-Si, SiN, and SiO2 by metallic and oxidic mode magnetron sputtering. J. Appl. Phys. 121, 115303 (2017)

    ADS  Google Scholar 

  36. H.C. Barshilia, B. Deepthi, K.S. Rajam, Stabilization of tetragonal and cubic phases of ZrO2 in pulsed sputter deposited ZrO2/Al2O3 and ZrO2/Y2O3 nanolayered thin films. J. Appl. Phys. 104, 113532 (2008)

    ADS  Google Scholar 

  37. Ş Altındal, Y. Azizian-Kalandaragh, M. Ulusoy, G. Pirgholi-Givi, The illumination effects on the current conduction mechanisms of the Au/(Er2O3:PVC)/n-Si (MPS) Schottky diodes. J. Appl. Polym. Sci. 139, e52497 (2022)

    Google Scholar 

  38. S. Chopra, R.P. Gupta, S. Banerjee, Hydrogen dependent surface morphology study of plasma deposited SiNx:H films for two gas systems SiH4/NH3 and SiH4/N2, in 2010 3rd International Nanoelectronics Conference (INEC), pp. 376–377 (2010)

  39. H. Kaji, H. Kondo, T. Fujii, M. Arita, Y. Takahashi, Effect of electrode and interface oxide on the property of ReRAM composed of Pr0.7Ca0.3MnO3. IOP Conf. Ser. Mater. Sci. Eng. 8, 012032 (2010)

    Google Scholar 

  40. N. Nanda Kumar Reddy, S. Godavarthi, K. Mohan Kumar, V.K. Kummara, S.V. Prabhakar Vattikuti, H.S. Akkera, Y. Bitla, S.A.K. Jilani, V. Manjunath, Evaluation of temperature-dependent electrical transport parameters in Fe3O4/SiO2/n-Si metal-insulator-semiconductor (MIS) type Schottky barrier heterojunction in a wide temperature range. J. Mater. Sci. Mater. Electron. 30, 8955–8966 (2019)

    Google Scholar 

  41. S. Adachi, H. Wakana, M. Horibe, N. Inoue, T. Sugano, K. Tanabe, Preparation of La-doped Yb-123 thin films for high-Tc devices. Phys. C Supercond. 378–381, 1213–1215 (2002)

    ADS  Google Scholar 

  42. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, P. Vivek, V. Balasubramani, P. Balraju, Jet nebulizer sprayed WO3-nanoplate arrays for high-photoresponsivity based metal-insulator-semiconductor structured Schottky barrier diodes. J. Inorg. Organomet. Polym Mater. 30, 731–748 (2020)

    Google Scholar 

  43. S. Phokha, S. Pinitsoontorn, P. Chirawatkul, Y. Poo-arporn, S. Maensiri, Synthesis, characterization, and magnetic properties of monodisperse CeO2 nanospheres prepared by PVP-assisted hydrothermal method. Nanoscale Res. Lett. 7, 425 (2012)

    ADS  Google Scholar 

  44. A.V. Prokofiev, A.I. Shelykh, B.T. Melekh, Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series. J. Alloy. Compd. 242, 41–44 (1996)

    Google Scholar 

  45. K. Sasikumar, R. Bharathikannan, M. Raja, B. Mohanbabu, Fabrication and characterization of rare earth (Ce, Gd, and Y) doped ZrO2 based metal-insulator-semiconductor (MIS) type Schottky barrier diodes. Superlattices Microstruct. 139, 106424 (2020)

    Google Scholar 

  46. A. Büyükbaş-Uluşan, A. Tataroğlu, Impedance spectroscopy of Au/TiO2/n-Si metal-insulator-semiconductor (MIS) capacitor. Phys. B 580, 411945 (2020)

    Google Scholar 

  47. M. Waghmare, P. Sonone, P. Patil, V. Kadam, H. Pathan, A. Ubale, Spray pyrolytic deposition of zirconium oxide thin films: influence of concentration on structural and optical properties. Eng. Sci. 5, 79–87 (2019)

    Google Scholar 

  48. B.-H. Liao, C.-N. Hsiao, M.-H. Shiao, S.-H. Chen, Characterization of silicon oxynitride films deposited by a high-power impulse magnetron sputtering deposition technique. Appl. Opt. 59, A176–A180 (2020)

    Google Scholar 

  49. Z.Q. Yao, P. Yang, N. Huang, H. Sun, G.J. Wan, Y.X. Leng, J. Wang, J.Y. Chen, Fabrication and surface characterization of pulsed reactive closed-field unbalanced magnetron sputtered amorphous silicon nitride films. Surf. Coat. Technol. 200, 4144–4151 (2006)

    Google Scholar 

  50. X. Yin, X. Xie, L. Song, Y. Zhou, P. Du, J. Xiong, The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells. J. Mater. Sci. 52, 11025–11035 (2017)

    ADS  Google Scholar 

  51. V.V. Kondalkara, X. Lia, S. Yanga, K. Leea, Current sensor based on nanocrystalline NiFe/Cu/NiFe thin film. Proc. Eng. 168, 675–679 (2016)

    Google Scholar 

  52. H. Zhang, H. Ding, M. Wei, C. Li, B. Wei, J. Zhang, Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition. Nanoscale Res. Lett. 10, 169 (2015)

    ADS  Google Scholar 

  53. E.H.W.R.H. Rhoderick, Metal-semiconductor contacts (Clarendon Press, Oxford University Press, Oxford, 1988)

  54. D. Tomer, S. Rajput, L.J. Hudy, C.H. Li, L. Li, Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions. Nanotechnology 26, 215702 (2015)

    ADS  Google Scholar 

  55. Z. Çaldıran, Modification of Schottky barrier height using an inorganic compound interface layer for various contact metals in the metal/p-Si device structure. J. Alloy. Compd. 865, 158856 (2021)

    Google Scholar 

  56. V. Rajagopal Reddy, V. Manjunath, V. Janardhanam, Y.-H. Kil, C.-J. Choi, Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution-processed high-k BaTiO3 interlayer. J. Electron. Mater. 43, 3499–3507 (2014)

    ADS  Google Scholar 

  57. K. Sasikumar, R. Bharathikannan, M. Raja, Effect of annealing temperature on structural and electrical properties of Al/ZrO2/p-Si MIS Schottky diodes. SILICON 11, 137–143 (2019)

    Google Scholar 

  58. H. Norde, A modified forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)

    ADS  Google Scholar 

  59. P. Chattopadhyay, A new technique for the determination of barrier height of Schottky barrier diodes. Solid State Electron. 38, 739–741 (1995)

    ADS  Google Scholar 

  60. S. Chattopadhyay, L.K. Bera, S.K. Ray, P.K. Bose, C.K. Maiti, Extraction of interface state density of Pt/p-strained-Si Schottky diode. Thin Solid Films 335, 142–145 (1998)

    ADS  Google Scholar 

  61. V. Manjunath, N.K.R. Nallabala, C. Yuvaraj, C. Kukkambakam, V.K. Kummara, S. Kumar, S. Sharma, M.V. Lakshmaiah, V.R. Minnam Reddy, Statistical analysis of current-voltage characteristics in Au/Ta2O5/n-GaN Schottky barrier heterojunction using different methods. Appl. Phys. A 127, 46 (2021)

    ADS  Google Scholar 

  62. A. Tatarolu, Comparative study of electrical properties of Au/n-Si (MS) and Au/Si3N4/n-Si (MIS) Schottky diodes. Chin. Phys. B 22, 68402–068402 (2013)

    Google Scholar 

  63. R. Padma, G. Lee, J.S. Kang, S.C. Jun, Structural, chemical, and electrical parameters of Au/MoS2/n-GaAs metal/2D/3D hybrid heterojunction. J. Colloid Interface Sci. 550, 48–56 (2019)

    ADS  Google Scholar 

  64. P. Harishsenthil, J. Chandrasekaran, R. Marnadu, P. Balraju, C. Mahendran, Influence of high dielectric HfO2 thin films on the electrical properties of Al/HfO2/n-Si (MIS) structured Schottky barrier diodes. Phys. B 594, 412336 (2020)

    Google Scholar 

  65. S. Alialy, Ş Altındal, E.E. Tanrıkulu, D.E. Yıldız, Analysis of temperature dependent current-conduction mechanisms in Au/TiO2/n-4H-SiC (metal/insulator/semiconductor) type Schottky barrier diodes. J. Appl. Phys. 116, 083709 (2014)

    ADS  Google Scholar 

  66. S. Demirezen, S. AltındalYerişkin, A detailed comparative study on electrical and photovoltaic characteristics of Al/p-Si photodiodes with coumarin-doped PVA interfacial layer: the effect of doping concentration. Polym. Bull. 77, 49–71 (2020)

    Google Scholar 

  67. S. Demirezen, H.G. Çetinkaya, Ş Altındal, Doping rate, interface states and polarization effects on dielectric properties, electric modulus, and AC conductivity in PCBM/NiO:ZnO/p-Si structures in wide frequency range. SILICON 14, 8517–8527 (2022)

    Google Scholar 

  68. A. Eroğlu, S. Demirezen, Y.A. Kalandaragh, Ş Altındal, A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer. J. Mater. Sci. Mater. Electron. 31, 14466–14477 (2020)

    Google Scholar 

  69. Ç. Bilkan, S. Zeyrek, S.E. San, Ş Altındal, A compare of electrical characteristics in Al/p-Si (MS) and Al/C20H12/p-Si (MPS) type diodes using current–voltage (I–V) and capacitance–voltage (C–V) measurements. Mater. Sci. Semicond. Process. 32, 137–144 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1089080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Manjunath or Si-Hyun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15399 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunath, V., Reddy, B.P., Chalapathi, U. et al. Influence of single and double interlayers on the electrical and current transport mechanism of Mo/n-Si Schottky diode and its microstructural and chemical properties. Appl. Phys. A 129, 467 (2023). https://doi.org/10.1007/s00339-023-06664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06664-4

Keywords

Navigation