Skip to main content
Log in

High velocity oxy-fuel (HVOF) sprayed coating nanoarchitectonics: influence of reduced graphene oxide (rGO) on tribological characteristics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In thermally sprayed tungsten carbide–cobalt (WC–Co) coatings, the hard WC particles perform as the wear-resistant part, while the cobalt act as binder and provides toughness. Due to their excellent properties, thermally sprayed WC–Co coatings have been widely used in many industrial applications requiring sliding, abrasion, erosion resistance, and fretting. The Tribological characteristics of nanostructured WC-25%Co coatings obtained using high velocity oxy-fuel (HVOF) spraying were investigated. The feedstock powder of nanostructured WC-25%Co used to deposit the coatings was mixed with the reduced graphene oxide (rGO) as an additive at three different weight percentages proportions of 0.5, 1.0, and 1.5 wt% to investigate its effect on the characteristics of coatings. The microstructural and tribological characteristics of obtained coatings were evaluated. The worn-out surfaces of coatings in the wear track were characterized to identify the wear mechanism involved. It is found that abrasion wear is the most predominant wear mechanism causing the wear loss of coatings. It is also found from wear track analysis that wear tracks are evident at 1.5 and 1.0 kgf loading conditions, while they are very lightly visible at 0.5 kgf loading condition because of lesser impact of WC ball over the coating surface. Microstructural characteristics of the coatings are altered, and the rGO bridges in the middle of the splats are also identified in coating’s microstructure. Also, a significant improvement is observed in the microhardness and surface roughness with rGOs reinforcement in the nanostructured coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary material. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Author, Mater. Sci. 14, 345 (2008).

  2. S. Das, T.K. Bandyopadhyay, S. Ghosh, A.B. Chattopadhyay, P.P. Bandyopadhyay, Metall. Mater. Trans. A 34, 1909 (2003)

    Article  Google Scholar 

  3. H. Liang, B. Shi, A. Fairchild, T. Cale, Vacuum 73, 317 (2004)

    Article  ADS  Google Scholar 

  4. H. Chen, S. Lee, X. Zheng, C. Ding, Wear 260, 1053 (2006)

    Article  Google Scholar 

  5. B. Liang, H. Liao, C. Ding, C. Coddet, Thin Solid Films 484, 225 (2005)

    Article  ADS  Google Scholar 

  6. S. Guessasma, M. Bounazef, P. Nardin, T. Sahraoui, Ceram. Int. 32, 13 (2006)

    Article  Google Scholar 

  7. P.P. Psyllaki, M. Jeandin, D.I. Pantelis, Mater. Lett. 47, 77 (2001)

    Article  Google Scholar 

  8. N. Vaxevanidis, D. Manolakos, G.P. Petropoulos, Tribol. Ind. 26, 42 (2004)

    Google Scholar 

  9. J.H. Ouyang, S. Sasaki, Ceram. Int. 27, 251 (2001)

    Article  Google Scholar 

  10. A.A.E. Hassan, N.H. Menzler, G. Blass, M.E. Ali, H.P. Buchkremer, D. Stöver, J. Mater. Sci. 37, 3467 (2002)

    Article  ADS  Google Scholar 

  11. D.D. Green, P.A. Williams, G. Pezzotti, I.C. Clarke, Key Eng. Mater. 240–242, 827 (2003)

    Article  Google Scholar 

  12. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  13. A. Srikanth, V. Bolleddu, J. Therm. Spray Technol. (2023). https://doi.org/10.1007/s11666-023-01556-8

    Article  Google Scholar 

  14. A.T. Dideikin, A.Y. Vul’, Front. Phys. (2019). https://doi.org/10.3389/fphy.2018.00149

    Article  Google Scholar 

  15. D.G. Trikkaliotis, A.K. Christoforidis, A.C. Mitropoulos, G.Z. Kyzas, ChemEngineering 5, 64 (2021)

    Article  Google Scholar 

  16. C. Gómez-Navarro, M. Burghard, K. Kern, Nano Lett. 8, 2045 (2008)

    Article  ADS  Google Scholar 

  17. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  18. Md.S. Islam, Y. Shudo, S. Hayami, Bull. Chem. Soc. Jpn. 95, 1 (2022)

    Article  Google Scholar 

  19. J.A. Buledi, N. Mahar, A. Mallah, A.R. Solangi, I.M. Palabiyik, N. Qambrani, F. Karimi, Y. Vasseghian, H. Karimi-Maleh, Food Chem. Toxicol. 161, 112843 (2022)

    Article  Google Scholar 

  20. J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Nano Lett. 8, 2458 (2008)

    Article  ADS  Google Scholar 

  21. G. Chen, W. Weng, D. Wu, C. Wu, J. Lu, P. Wang, X. Chen, Carbon 42, 753 (2004)

    Article  Google Scholar 

  22. J. Campos-Delgado, Y.A. Kim, T. Hayashi, A. Morelos-Gómez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R.D. Shull, M.S. Dresselhaus, M. Terrones, Chem. Phys. Lett. 469, 177 (2009)

    Article  ADS  Google Scholar 

  23. F.L. Zhang, C.Y. Wang, M. Zhu, Scr. Mater. 49, 1123 (2003)

    Article  Google Scholar 

  24. A.H. Dent, S. DePalo, S. Sampath, J. Therm. Spray Technol. 11, 551 (2002)

    Article  ADS  Google Scholar 

  25. F. Ghadami, S. Ghadami, H. Abdollah-Pour, Vacuum 94, 64 (2013)

    Article  ADS  Google Scholar 

  26. P.K. Aw, A.L.K. Tan, T.P. Tan, J. Qiu, Thin Solid Films 516, 5710 (2008)

    Article  ADS  Google Scholar 

  27. G.M.T. Basha, B. Venkateshwarlu, I.O.P. Conf, Ser. Mater. Sci. Eng. 1123, 012065 (2021)

    Google Scholar 

  28. A. Nieto, D. Lahiri, A. Agarwal, Carbon 50, 4068 (2012)

    Article  Google Scholar 

  29. I. Ahmad, M. Islam, T. Subhani, Y. Zhu, J. Mater. Eng. Perform. 24, 4236 (2015)

    Article  Google Scholar 

  30. B. Mukherjee, O.S. Asiq Rahman, A. Islam, M. Sribalaji, A.K. Keshri, J. Alloys Compd. 727, 658 (2017)

    Article  Google Scholar 

  31. J. Yuan, Q. Zhan, J. Huang, S. Ding, H. Li, Mater. Chem. Phys. 142, 165 (2013)

    Article  Google Scholar 

  32. A. Formisano, F. Capece Minutolo, A. Caraviello, L. Carrino, M. Durante, A. Langella, Adv. Tribol. 2016, e5063274 (2016)

    Article  Google Scholar 

  33. S.C. Jambagi, A. Agarwal, N. Sarkar, P.P. Bandyopadhyay, J. Mater. Eng. Perform. 27, 2364 (2018)

    Article  Google Scholar 

  34. X.-T. Luo, C.-X. Li, F.-L. Shang, G.-J. Yang, Y.-Y. Wang, C.-J. Li, J. Therm. Spray Technol. 24, 100 (2015)

    Article  ADS  Google Scholar 

  35. S. Priyadershini, O.S.A. Rahman, K.K. Pandey, A.K. Keshri, Ceram. Int. 45, 5768 (2019)

    Article  Google Scholar 

  36. H. Myalska, G. Moskal, K. Szymański, Surf. Coat. Technol. 260, 303 (2014)

    Article  Google Scholar 

  37. K. Goyal, H. S. Sidhu, R. Bhatia, Int. J. Mech. Eng. Robot. (IJMER). 3, 2321–5747 (2015)

    Google Scholar 

  38. M. Heydarzadeh Sohi, F. Ghadami, Tribol. Int. 43, 882 (2010)

    Article  Google Scholar 

  39. S. Ariharan, A. Nisar, N. Balaji, S.T. Aruna, K. Balani, Compos. Part B Eng. 124, 76 (2017)

    Article  Google Scholar 

  40. K. Goyal, H. Singh, R. Bhatia, J. Aust. Ceram. Soc. 55, 315 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. B. Venkateshwarlu and A. Srikanth acknowledge the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, India for providing the financial support to this research work via Project No.: EEQ/2017/000096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateshwarlu Bolleddu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikanth, A., Bolleddu, V. High velocity oxy-fuel (HVOF) sprayed coating nanoarchitectonics: influence of reduced graphene oxide (rGO) on tribological characteristics. Appl. Phys. A 129, 318 (2023). https://doi.org/10.1007/s00339-023-06607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06607-z

Keywords

Navigation