Skip to main content
Log in

Titanium content and columnar particles effect on the deformation behaviors of nanocrystalline Ni–Ti alloy with GBAZ segregation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulation is carried out to analyze the titanium content effect on the deformation behaviors in nanocrystalline (NC) Ni–Ti alloy with alloy atoms segregated in grain boundary affect zone (GBAZ). The GBAZ is generated by equidistance scaling of the vertices of a polygon using an isometric entity command. The MD simulation indicates that the fracture toughness and tensile strength of NC Ni–Ti alloy can be obviously enhanced by augmenting the titanium content. This corresponding deformation mechanisms about the enhanced fracture toughness through enlarging the titanium content are explored in detail. Furthermore, the influence of columnar particles on the mechanical behaviors of NC Ni–Ti alloy is studied. At the same time, the pinning mechanism of columnar particles on GBAZ of the matrix phase is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. I. Darwin Immanuel, M. Gangaraju, D. Arulkirubakaran, R. Malkiya Rasalin Prince, T. Debnath, D. Palanisamy, (2022) Fabrication, mechanical testing, machining of shape memory alloy-A review, Materials Today: Proceedings.

  2. S. Sampath, Influence of copper on the deformation behavior of NiTi shape memory alloys in isothermal compression, Materials Today: Proceedings (2022).

  3. T. Rabczuk, T. Belytschko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, World Congress on Computational Mechanics, 2004.

  4. Y. Zhang, H.A. Mang, Global cracking elements: a novel tool for Galerkin-based approaches simulating quasi-brittle fracture, 2019.

  5. T. Rabczuk, G. Zi, S. Bordas, H. Nguyen-Xuan, A simple and robust three-dimensional cracking-particle method without enrichment. Comput. Methods Appl. Mech. Eng. 199, 2437–2455 (2010)

    Article  ADS  MATH  Google Scholar 

  6. Y. Zhang, R. Lackner, M. Zeiml, H.A. Mang, Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energy-based crack-tracking strategy, and validations. Comput. Methods Appl. Mech. Eng. 287, 335–366 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Y. Zhang, X. Zhuang, Cracking elements: a self-propagating strong discontinuity embedded approach for quasi-brittle fracture. Finite Elem. Anal. Des. 144, 84–100 (2018)

    Article  MathSciNet  Google Scholar 

  8. Y. Zhang, Z. Gao, Y. Li, X. Zhuang, On the crack opening and energy dissipation in a continuum based disconnected crack model. Finite Elem. Anal. Des. 170, 103333 (2020)

    Article  MathSciNet  Google Scholar 

  9. Y. Zhang, J. Huang, Y. Yuan, H.A. Mang, Cracking elements method with a dissipation-based arc-length approach. Finite Elem. Anal. Des. 195, 103573 (2021)

    Article  MathSciNet  Google Scholar 

  10. Y. Zhang, X. Zhuang, Cracking elements method for dynamic brittle fracture. Theoret. Appl. Fract. Mech. 102, 1–9 (2019)

    Article  Google Scholar 

  11. Y. Zhang, X. Yang, X. Wang, X. Zhuang, A micropolar peridynamic model with non-uniform horizon for static damage of solids considering different nonlocal enhancements. Theoret. Appl. Fract. Mech. 113, 102930 (2021)

    Article  Google Scholar 

  12. Y. Zhang, Z. Gao, X. Wang, Q. Liu, Predicting the pore-pressure and temperature of fire-loaded concrete by a hybrid neural. Network 19, 2142011 (2022)

    MathSciNet  Google Scholar 

  13. Y. Zhang, Z. Gao, X. Wang, Q.J. Liu, Image representations of numerical simulations for training neural networks. Compu.r Model. Eng. Sci (2023). https://doi.org/10.32604/cmes.2022.022088

    Article  Google Scholar 

  14. H.W. Xiaoyang Yi, K. Sun, W. Gao et al., Characterization of high-strength Ti–Ni shape memory alloys prepared by hot pressed sintering. J Alloys Comp. 854, 157159 (2021)

    Article  Google Scholar 

  15. G.S. Xiaoyang Yi, X. Meng, H. Wang et al., The higher compressive strength (TiB+La2O3)_Ti–Ni shape memory alloy composite with the larger recoverable strain. Compos. Commun 23, 100583 (2021)

    Article  Google Scholar 

  16. R.Z.V. I.A. Ovid’ko, Y.T. Zhu, Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater. Sci 94, 462–540 (2018)

    Article  Google Scholar 

  17. G. Li, F. Zhang, D. Zhu, L. Wang, Segregation thickness effect on the mechanical behaviors of nanocrystalline Ni-doped W alloy. Phys. Lett. A 409, 127513 (2021)

    Article  Google Scholar 

  18. X. Shi, J. Li, W. Tang, J. Zhang, Effect of grain size on Lüders-type deformation and plastic deformation of V nanowires/NiTi composites. Mater. Charact. 194, 112388 (2022)

    Article  Google Scholar 

  19. G.L. Feng Zhang, D. Zhu, J. Zhou, Grain size effect on the mechanical behaviors in nanocrystalline Cu-Ag alloy with grain boundary affect zone segregation. Mater. Lett 278, 128406 (2020)

    Article  Google Scholar 

  20. F.C. Zhifu Zhao, Y. Wei, Atomistic scale behaviors of crack propagation in nanocrystalline bcc iron. Mater Sci Eng A. 809, 140948 (2021)

    Article  Google Scholar 

  21. N. Vu-Bac, T. Lahmer, H. Keitel, J. Zhao, X. Zhuang, T.J.M.o.M. Rabczuk, Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mech. Mater. 68, 70–84 (2014)

    Article  Google Scholar 

  22. N. Vu-Bac, T. Lahmer, Y. Zhang, X. Zhuang, T. Rabczuk, Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Compos. B 59, 80–95 (2014)

    Article  Google Scholar 

  23. N.S. Vu-Bac, M. Lahmer, T. Zhuang, X. Rabczuk, T., %J Computational Materials Science a unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computat. Mater. Sci. 96, 520–535 (2015)

    Article  Google Scholar 

  24. N. Vu-Bac, R. Rafiee, X. Zhuang, T. Lahmer, T.J.C. Rabczuk, Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Compos. Part B: Eng. (2015). https://doi.org/10.1016/j.compositesb.2014.09.008

    Article  Google Scholar 

  25. N. Vu-Bac, T. Lahmer, X. Zhuang, Nguyen-Thoi, R.J.A.i.E., Software, A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv. Eng Software 100, 19–31 (2016)

    Article  Google Scholar 

  26. N. Vu-Bac, X. Zhuang, T.J.M. Rabczuk, Uncertainty quantification for mechanical properties of polyethylene based on fully atomistic model. Materials 12, 3613 (2019)

    Article  ADS  Google Scholar 

  27. B. Liu, N. Vu-Bac, X. Zhuang, T.J.M.o.M. Rabczuk, Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites. Mech. Mater. 142, 103280 (2020)

    Article  Google Scholar 

  28. B. Liu, N. Vu-Bac, T.J.C.S. Rabczuk, A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms. Compos. Struct. 273, 114269 (2021)

    Article  Google Scholar 

  29. B. Liu, N. Vu-Bac, X. Zhuang, X. Fu, T.J.C.s. Rabczuk, Stochastic full-range multiscale modeling of thermal conductivity of Polymeric carbon nanotubes composites: a machine learning approach. Compos. Struct. (2022). https://doi.org/10.1016/j.compstruct.2022.115393

    Article  Google Scholar 

  30. B. Liu, N. Vu-Bac, X. Zhuang, X. Fu, T. Rabczuk, Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites. Compos. Sci. Technol. 224, 109425 (2022)

    Article  Google Scholar 

  31. N. Pant, S. Das, P. Bellon, R.S. Averback, M. Krief, Y. Ashkenazy, Role of interfaces on phase formation during severe plastic deformation. Acta Mater. 240, 118333 (2022)

    Article  Google Scholar 

  32. N.V. Nirab Pant, Y. Ashkenazy, P. Bellon, R.S. Averback, Phase evolution in two-phase alloys during severe plastic deformation. Acta Mater. 210, 116826 (2021)

    Article  Google Scholar 

  33. F. Zhang, G. Li, J. Zhou, Deformation mechanism of bimodal nanotwinned Cu-Ag alloy with grain boundary affect zone segregation. Mater. Today Commun. 29, 102856 (2021)

    Article  Google Scholar 

  34. R.S. Zengin, V. Sezer, A novel point inclusion test for convex polygons based on Voronoi tessellations. Appl. Math. Comput. 399, 126001 (2021)

    MathSciNet  MATH  Google Scholar 

  35. H.M.A. Aidan, P. Thompson, R. Berger, D.S. Bolintineanu et al., LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022)

    Article  Google Scholar 

  36. N. Vu-Bac, M.A. Bessa, T. Rabczuk, W.K.J.M. Liu, A multiscale model for the quasi-static thermo-plastic behavior of highly cross-linked glassy polymers. Macromolecules 48(18), 6713–6723 (2015)

    Article  ADS  Google Scholar 

  37. N. Vu-Bac, P. Areias, T.J.P. Rabczuk, A multiscale multisurface constitutive model for the thermo-plastic behavior of polyethylene. Polymers 105, 327–338 (2016)

    Article  Google Scholar 

  38. M. Jbeili, J. Zhang, The generalized periodic boundary condition for microscopic simulations of heat transfer in heterogeneous materials. Int. J. Heat Mass Transf. 173, 121200 (2021)

    Article  Google Scholar 

  39. K. Zhou, B. Liu, Chapter 3 - Control techniques of molecular dynamics simulation, in: K. Zhou, B. Liu (Eds.), Molecular Dynamics Simulation, Elsevier2022, pp. 67–96.

  40. W.Z. Polak, Efficiency in identification of internal structure in simulated monoatomic clusters: comparison between common neighbor analysis and coordination polyhedron method. Comput. Mater. Sci. 201(2022), 110882 (2022)

    Article  Google Scholar 

  41. W.Z. Polak, Efficiency in identification of internal structure in simulated monoatomic clusters: comparison between common neighbor analysis and coordination polyhedron method. Comput. Mater. Sci. 201, 110882 (2022)

    Article  Google Scholar 

  42. L. Wang, X. Liang, B. Liu, M. Oehring, J. Paul, J. Liu, M. Song, F. Pyczak, Y. Liu, Stacking fault formation in perovskite Ti3AlC carbides in a TiAl based alloy during creep at 800°C. Scripta Mater. 222, 115034 (2023)

    Article  Google Scholar 

  43. L. Bin, X. Liao, B. Geng, Q. Zhu, M. Yu, J. Li, K. Liu, D. Jia, Z. Yang, Y. Zhou, A pinning effect for the enhanced oxidation resistance at 1600 °C of silicoboron carbonitride ceramics with the addition of MXene. Corros. Sci. 196, 110041 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (52005248), Scientific research fund project of Nanjing Institute of Technology (CKJA202101), Natural Science Foundation of Jiangsu Province (BK20201031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhang or Jianqiu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Wang, R., Zhang, F. et al. Titanium content and columnar particles effect on the deformation behaviors of nanocrystalline Ni–Ti alloy with GBAZ segregation. Appl. Phys. A 129, 152 (2023). https://doi.org/10.1007/s00339-023-06437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06437-z

Keywords

Navigation