Skip to main content
Log in

The practical doping principles of tuning antiferromagnetic state in BiMn2O5 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A series of Bi1-xSrxMn2-yTiyO5 ceramics were synthesized via a conventional solid-state reaction method, and their crystal structures and magnetic properties were investigated. The strong correlation between the magnetic behavior and mixed–valence states of the Mn ions was characterized by a vibrating sample magnetometer and XPS measurements. Here, we disclose the equation of band angle, length, and magnetic ground state, which is ascribed to the doping element and concentration. Magnetic characterization reveals that Sr- doped (x = 0.3) ceramics exhibit oxygen vacancy-induced ferromagnetic behaviors, which is understood by the bound magnetic polarons mechanism. To clarify the origin of ferromagnetic behavior in non–magnetic doped ceramics, contrast experiments of temperature-dependent magnetic traits of Ti-doped ceramics were analyzed. Furthermore, the tunable Néel temperature is ascribed to the large effective exchange coupling constant. The significance of this work is that we demonstrate an effective tool for manipulating the antiferromagnetic state and offer practical doping principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. W. Legrand, D. Maccariello, F. Ajejas, S. Collin, A. Vecchiola, K. Bouzehouane, N. Reyren, V. Cros, A. Fert, Room–temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nature. Mater. 19, 34–42 (2020)

    Article  ADS  Google Scholar 

  2. T. Jungwirth, J. Sinova, A. Manchon, X. Marti, J. Wunderlich, C. Felser, The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018)

    Article  Google Scholar 

  3. Y. Cheng, E. Cogulu, R.D. Resnick, J.J. Michel, N.N. Statuto, A.D. Kent, F.Y. Yang, Third harmonic characterization of antiferromagnetic heterostructures. Nat. Commun. 13, 1–6 (2022)

    Google Scholar 

  4. Y.S. Tang, G.Z. Zhou, L. Lin, R. Chen, J.F. Wang, C.L. Lu, L. Huang, J.H. Zhang, Z.B. Yan, X.M. Lu, X.K. Huang, X.P. Jiang, J.M. Liu, Successive electric polarization transitions induced by high magnetic field in the single–crystal antiferromagnet Co2Mo3O8. Phys. Rev. B 105, 064108 (2022)

    Article  ADS  Google Scholar 

  5. M.H. Du, J.Q. Yan, V.R. Cooper, M. Eisenbach, Tuning fermi levels in intrinsic antiferromagnetic topological insulators MnBi2Te4 and MnBi4Te7 by defect engineering and chemical doping. Adv. Fun. Mater. 31, 2006516 (2021)

    Article  Google Scholar 

  6. H. Yan, Z.X. Feng, P.X. Qin, X.R. Zhou, H.X. Guo, X.N. Wang, H.Y. Chen, X. Zhang, H.J. Wu, C.B. Jiang, Z.Q. Liu, Electric–field–controlled antiferromagnetic spintronic devices. Adv. Mater. 32, 1905603 (2020)

    Article  Google Scholar 

  7. E.Z. Zhang, Y.C. Deng, X.H. Liu, X.Z. Zhan, T. Zhu, K.Y. Wang, Manipulating antiferromagnetic interfacial states by spin–orbit torques. Phys. Rev. B 104, 134408 (2021)

    Article  ADS  Google Scholar 

  8. E. Golias, I. Kumberg, I. Gelen, S. Thakur, J. Gördes, R. Hosseinifar, Q. Guillet, J.K. Dewhurst, S. Sharma, C.S. Langeheine, N. Pontius, W. Kuch, Ultrafast optically induced ferromagnetic state in an elemental antiferromagnet. Phys. Rev. Lett. 126, 107202 (2021)

    Article  ADS  Google Scholar 

  9. E. Dagotto, Nanoscale phase separation and colossal magnetoresistance, in Springer. ed. by M. Din (Heidelberg, 2003)

    Google Scholar 

  10. H.Y. Zhai, J.X. Ma, D.T. Gillaspie, X.G. Zhang, T.Z. Ward, E.W. Plummer, J. Shen, Giant discrete steps in metal–insulator transition in perovskite manganite wires. Phys. Rev. Lett. 97, 167201 (2006)

    Article  ADS  Google Scholar 

  11. Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 1–23 (1999)

    Article  ADS  Google Scholar 

  12. K. Annamalai, R. Radha, S.E. Kichanov, M. Navaneethan, S. Balakumar, Ice bath assisted BiMn2O5 (mullite) phase synthesis, structural and compositional analysis under different Bi concentration. ECS J. Solid State Sc. 10, 061001 (2021)

    Google Scholar 

  13. L.H. Yin, B. Yuan, J. Chen, D.M. Zhang, Q.L. Zhang, J. Yang, J.M. Dai, W.H. Song, Y.P. Sun, Dielectric relaxations and magnetodielectric response in BiMn2O5 single crystal. Appl. Phys. Lett. 103, 152908 (2013)

    Article  ADS  Google Scholar 

  14. D.K. Shukla, S. Ravi Kumar, R.J. Mollah, P. Choudhary, S.K. Thakur, N.B. Sharma, M.K. Brookes, Modifications in magnetic properties of BiMn2O5 multiferroic using swift heavy ion irradiation. J. Appl. Phys. 107, 09D903 (2010)

    Article  Google Scholar 

  15. V.M. Gaikwad, S. Goyal, P. Yanda, A. Sundaresan, S. Chakraverty, A.K. Ganguli, Influence of Fe substitution on structural and magnetic features of BiMn2O5 nanostructures. J. Mag. Mag. Mater. 452, 120–128 (2018)

    Article  ADS  Google Scholar 

  16. Y.S. Liu, I. Zhitomirsky, Electrochemical supercapacitor based on multiferroic BiMn2O5. J. Power Sources 284, 377–382 (2015)

    Article  ADS  Google Scholar 

  17. D. Wang, X.B. Li, H.B. Sun, Modulation doping: a strategy for 2D materials electronics. Nano Lett. 21(14), 6298–6303 (2021)

    Article  ADS  Google Scholar 

  18. L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys. Condens. Matter. 20, 434220 (2008)

    Article  Google Scholar 

  19. B. Behera, B.C. Sutar, N.R. Pradhan, Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity. Emerg. Mater. Res. 4, 847–863 (2021)

    Article  Google Scholar 

  20. A. C. Larson, R. B. Von Dreele Report LAUR (1986–2004) 86–748. Los Alamos National Laboratory.

  21. B.H. Toby Expgui, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)

    Article  Google Scholar 

  22. F. Khammassi, W. Chérif, A. Mendoza, D.S. Jaramillo, S.L. Méndez, M. Dammak, Long–and short–range magnetic interactions in nanocrystalline lightly Cr–doped manganites. Appl. Phys. A 128, 718 (2022)

    Article  ADS  Google Scholar 

  23. B. Feng, T. Yokoi, A. Kumamoto, M. Yoshiya, Y. Ikuhara, N. Shibata, Atomically ordered solute segregation behaviour in an oxide grain boundary, Nat. Commun. 7 (2016) 11079.

  24. I.M. Lifshitz, V.V. Slyozov, The Kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)

    Article  ADS  Google Scholar 

  25. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer–sized ZnO particles. J. Theo. Appl. Phys. 6, 6 (2012)

    Article  Google Scholar 

  26. B. Santara, P.K. Giri, K. Imakita, M. Fujii, Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 5, 5476 (2013)

    Article  ADS  Google Scholar 

  27. C. Vecchini, L.C. Chapon, P.J. Brown, T. Chatterji, S. Park, S.W. Cheong, P.G. Radaelli, Commensurate magnetic structures of RMn2O5 (R=Y, Ho, Bi) determined by single–crystal neutron diffraction. Phys. Rev. B 77, 134434 (2008)

    Article  ADS  Google Scholar 

  28. S.H. Masunaga, R.F. Jardim, M.J. Correia, W. Figueiredo, Role of dipolar interactions and volume particle size distribution on the nonmonotonic magnetic field dependence of the blocking temperature in magnetic nanoparticles. J. Phys. Chem. C 120, 765–770 (2016)

    Article  Google Scholar 

  29. D. Tobia, E. De Biasi, M. Granada, H.E. Troiani, G. Zampieri, E. Winkler, R.D. Zysler, Evolution of the magnetic anisotropy with particle size in antiferromagnetic Cr2O3 nanoparticles. J. Appl. Phys. 108, 104303 (2010)

    Article  ADS  Google Scholar 

  30. N. Kumar, S. Luding, V. Magnanimo, Macroscopic model with anisotropy based on micro–macro information. Acta Mech. 225, 2319–2343 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. D.K. Shukla, R. Kumar, S.K. Sharma, P. Thakur, R.J. Choudhary, S. Mollah, N.B. Brookes, M. Knobel, K.H. Chae, W.K. Choi, Thin film growth of multiferroic BiMn2O5 using pulsed laser ablation and its characterization. J. Phys. D: Appl. Phys. 42, 125304 (2009)

    Article  ADS  Google Scholar 

  32. Y. Gao, J.J. Wang, L. Wu, S.Y. Bao, Y. Shen, Y.H. Lin, C.W. Nan, Tunable magnetic and electrical behaviors in perovskite oxides by oxygen octahedral tilting. Sci. China Mater. 58, 302–312 (2015)

    Article  Google Scholar 

  33. P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen, D.N. Argyriou, Structural effects on the magnetic and transport properties of perovskite A1-xAxMnO3 (0.25, 0.30). Phys. Rev. B. 56, 8265–8276 (1997)

    Article  ADS  Google Scholar 

  34. L.D. Mendonca, M.S. Murari, M.D. Daivajna, The room temperature inflection of magnetism and anomalous thermoelectric power in lacunar compounds of La0 85−xBixK0 15MnO3. Phys. Chem. Chem. Phys. 22(35), 19888–19902 (2020)

    Article  Google Scholar 

  35. K. Ahadi, X.Z. Lu, S.S. Rezaie, P.B. Marshall, J.M. Rondinelli, S. Stemmer, Anisotropic magnetoresistance in the itinerant antiferromagnetic EuTiO3. Phys. Rev. B. 99, 041106 (2019)

    Article  ADS  Google Scholar 

  36. J.S. Jaiswar, K.D. Mandal, Evidence of enhanced oxygen vacancy defects inducing ferromagnetism in multiferroic CaMn7O12 manganite with sintering time. J. Phys. Chem. C 121, 19586–19601 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant nos. 12074204, 11904054, 11864028), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT22107), Natural Science Foundation of Inner Mongolia (Grant No. 2022ZD06), and the Program for Higher–Level Talents of Inner Mongolia University (10000–21311201/061).

Author information

Authors and Affiliations

Authors

Contributions

WS, YL, LZ, YZ, JL, JC, and YB: Experimental procedure, data curation, formal analysis, and investigation. GH, XB: Visualization, software, conceptualization. JC: XPS characterization. WS, GH, XB, CH, YB Writing-original draft. YB, SZ: Writing-review editing, supervision, and validation.

Corresponding authors

Correspondence to Yulong Bai or Shifeng Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, W., He, G., Bao, X. et al. The practical doping principles of tuning antiferromagnetic state in BiMn2O5 ceramics. Appl. Phys. A 129, 108 (2023). https://doi.org/10.1007/s00339-023-06390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06390-x

Keywords

Navigation