Skip to main content
Log in

Structural, electrical, magnetic and magnetotransport properties of La0.7Ca0.18Ba0.12Mn0.95Sn0.05O3 manganite prepared with different quenching processes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Structural, microstructural, magnetic, electrical and magneto-transport properties of La0.7Ca0.18Ba0.12Mn0.95Sn0.05O3 manganite powders, prepared by the solid state method, were investigated. Two quenching processes were performed on the samples: quenching in air and quenching to 77 K in liquid nitrogen. X-ray diffraction patterns refinement revealed that the samples crystallized in the orthorhombic structure. The scanning electron microscopy micrographs presented granular characters. The magnetization vs temperature plot showed a paramagnetic-ferromagnetic transition. The inverse susceptibility \({\chi }^{-1}(T)\) deviation from the Curie–Weiss law revealed the existence of the phase above TC in the nitrogen-quenched sample. The hysteresis cycles reveal that the samples are ferromagnetic at 1.8 K and paramagnetic at 300 K. The resistivity curves exhibit a ferromagnetic-metallic to paramagnetic-insulating transition. The magnetoresistance increased slightly in the sample quenched to 77 K in N2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. E.S.M. Seo, A.A. Couto, N.B. Lima, A.C. Kohler, E.P. Soares, Properties of Sr-doped lanthanum manganites for SOFC. Mater. Sci. Forum 416, 354–358 (2003). https://doi.org/10.4028/www.scientific.net/MSF.416-418.354

    Article  Google Scholar 

  2. Y. Xu, U. Memmert, U. Hartmann, Magnetic field sensors from polycrystalline manganites. Sens. Actuators A Phys. 91(1–2), 26–29 (2001). https://doi.org/10.1016/S0924-4247(01)00493-9

    Article  Google Scholar 

  3. L. Li, L. Liang, H. Wu, X. Zhu, One-dimensional perovskite manganite oxide nanostructures: recent developments in synthesis, characterization, transport properties, and applications. Nanoscale Res. Lett. 11(1), 1–17 (2016). https://doi.org/10.1186/s11671-016-1320-1

    Article  ADS  Google Scholar 

  4. F. Ayadi, Y. Regaieg, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, H. Lecoq, S. Nowak, S. Ammar, L. Sicard, Preparation of nanostructured La0. 7Ca0. 3− xBaxMnO3 ceramics by a combined sol–gel and spark plasma sintering route and resulting magnetocaloric properties. J. Magn. Magn. Mater. 381, 215–219 (2015). https://doi.org/10.1016/j.jmmm.2014.12.047

    Article  ADS  Google Scholar 

  5. N.D. Thorat, K.P. Shinde, S.H. Pawar, K.C. Barick, C.A. Betty, R.S. Ningthoujam, Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Dalton Trans. 41(10), 3060–3071 (2012). https://doi.org/10.1039/c2dt11835a

    Article  Google Scholar 

  6. Y. Tokura, Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69(3), 797 (2006). https://doi.org/10.1088/0034-4885/69/3/r06

    Article  ADS  Google Scholar 

  7. V.K. Pecharsky, K.A. Gschneidner Jr., Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from∼ 20 to∼ 290 K. Appl. Phys. Lett. 70(24), 3299–3301 (1997). https://doi.org/10.1063/1.119206

    Article  ADS  Google Scholar 

  8. L. Morellon, J. Blasco, P.A. Algarabel, M.R. Ibarra, Nature of the first-order antiferromagnetic-ferromagnetic transition in the Ge-rich magnetocaloric compounds Gd 5 (Six Ge1–x) 4. Phys. Rev. B 62(2), 1022 (2000). https://doi.org/10.1103/PhysRevB.62.1022

    Article  ADS  Google Scholar 

  9. J.B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M (II)] MnO3. Phys. Rev. 100(2), 564 (1955). https://doi.org/10.1103/PhysRev.100.564

    Article  ADS  Google Scholar 

  10. S. Mori, C.H. Chen, S.W. Cheong, Paired and unpaired charge stripes in the ferromagnetic phase of La0.5Ca0.5MnO3. Phys. Rev. Lett. 81(18), 3972–3975 (1998). https://doi.org/10.1103/PhysRevLett.81.3972

    Article  ADS  Google Scholar 

  11. R.B. Griffiths, Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23(1), 17 (1969). https://doi.org/10.1103/PhysRevLett.23.17

    Article  ADS  Google Scholar 

  12. K. Chu, T. Sun, Y. Liu, G. Dong, S. Zhang, H. Li, X. Pu, X. Yu, X. Liu, Enhanced room temperature coefficient of resistivity (RT-TCR) and broad metal-insulator transition temperature (TMI) of La0.67Ca0.33-xAgxMnO3 polycrystalline ceramics. Ceram. Int. 45(14), 17073–17080 (2019). https://doi.org/10.1016/j.ceramint.2019.05.259

    Article  Google Scholar 

  13. X. Yu, H. Li, K. Chu, X. Pu, X. Gu, S. Jin, X. Guan, X. Liu, A comparative study on high TCR and MR of La0.67Ca0.33MnO3 polycrystalline ceramics prepared by solid-state and sol-gel methods. Ceram. Int. 47(10), 13469–13479 (2021). https://doi.org/10.1016/j.ceramint.2021.01.205

    Article  Google Scholar 

  14. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1− xSr xMnO 3. Phys. Rev. Lett. 74(25), 5144 (1995). https://doi.org/10.1103/PhysRevLett.74.5144

    Article  ADS  Google Scholar 

  15. F. Damay, A. Maignan, C. Martin, B. Raveau, Cation size-temperature phase diagram of the manganites Ln0.5Sr0.5MnO3. J. Appl. Phys. 81(3), 1372–1377 (1997). https://doi.org/10.1063/1.363873

    Article  ADS  Google Scholar 

  16. N. Abdelmoula, E. Dhahri, K. Guidara, J.C. Joubert, Structural magnetic and electrical properties of La0. 6Ba4− xSrxMnO3 perovskite. Phase Transit. 69(2), 215–226 (1999). https://doi.org/10.1080/01411599908208020

    Article  Google Scholar 

  17. M. Bejar, H. Feki, E. Dhahri, M. Ellouze, M. Balli, E.K. Hlil, Effects of substituting divalent by monovalent ion on the physical properties of La0. 7Ca0. 3− xKxMnO3 compounds. J. Magn. Magn. Mater. 316(2), e707–e709 (2007). https://doi.org/10.1016/j.jmmm.2007.03.067

    Article  ADS  Google Scholar 

  18. A.K.M.A. Hossain, L.F. Cohen, T. Kodenkandeth, J. MacManus-Driscoll, N.M. Alford, Influence of oxygen vacancies on magnetoresistance properties of bulk La0.67Ca0. 33MnO3− δ. J. Magn. Magn. Mater. 195(1), 31–36 (1999). https://doi.org/10.1016/S0304-8853(98)00749-5

    Article  ADS  Google Scholar 

  19. N. Sdiri, M. Bejar, M. Hussein, S. Mazen, E. Dhahri, Effect of the oxygen deficiency in physical properties of La0. 7Ca0. 25Sr0. 05MnO3− δ□ δ oxides (0⩽ δ⩽ 0.15). J. Magn. Magn. Mater. 316(2), e703–e706 (2007). https://doi.org/10.1016/j.jmmm.2007.03.066

    Article  ADS  Google Scholar 

  20. H. Song, W. Kim, S.-J. Kwon, J. Kang, Magnetic and electronic properties of transition-metal-substituted perovskite manganites—La0.7Ca0.3Mn0.95X0.05O3 (X= Fe Co, Ni). J. Appl. Phys. 89(6), 3398–3402 (2001). https://doi.org/10.1063/1.1350417

    Article  ADS  Google Scholar 

  21. Y. Sun, T. Wei, X. Xiaojun, Z. Yuheng, Extraordinary colossal magnetoresistance in La0.67Ca0.33Mn1-xCrxO3(x≤0.3). J. Magn. Magn. Mater. (2001). https://doi.org/10.1016/S0304-8853(01)00155-x

    Article  Google Scholar 

  22. R.-W. Li, J.-R. Sun, Z.-H. Wang, S.-Y. Zhang, B.-G. Shen, Magnetic and transport properties of Sn-doped La0.5Ca0.5MnO3. J. Phys. D. 33(16), 1982 (2000). https://doi.org/10.1088/0022-3727/33/16/308

    Article  ADS  Google Scholar 

  23. T.M. Tank, V. Sridharan, S.S. Samatham, V. Ganesan, S.P. Sanyal, Effect of Sn substitution on structural and transport properties of (La0.67Sr0.33)MnO3. AIP Conf. Proc. 1536(1), 573–574 (2013). https://doi.org/10.1063/v1536.frontmatter

    Article  ADS  Google Scholar 

  24. N. Kallel, K. Fröhlich, S. Pignard, M. Oumezzine, H. Vincent, Structure, magnetic and magnetoresistive properties of La0.7Sr0.3Mn1−xSnxO3 samples (0≤ x≤ 0.20). J. Alloys Compd. 399(1–2), 20–26 (2005). https://doi.org/10.1016/j.jallcom.2005.03.019

    Article  Google Scholar 

  25. S.R. Lee, M.S. Anwar, F. Ahmed, B.H. Koo, Effect of sintering temperature on structure, magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 manganite. Trans. Nonferrous Met. Soc. China 24, s141–s145 (2014). https://doi.org/10.1016/S1003-6326(14)63301-x

    Article  Google Scholar 

  26. G. Venkataiah, D.C. Krishna, M. Vithal, S.S. Rao, S.V. Bhat, V. Prasad, S.V. Subramanyam, P.V. Reddy, Effect of sintering temperature on electrical transport properties of La0.67Ca0.33MnO3. Phys. B Condens. Matter 357(3–4), 370–379 (2005). https://doi.org/10.1016/j.physb.2004.12.001

    Article  ADS  Google Scholar 

  27. S.V. Trukhanov, D.P. Kozlenko, A.V. Trukhanov, High hydrostatic pressure effect on magnetic state of anion-deficient La0.70Sr0.30MnOx perovskite manganites. J. Magn. Magn. Mater. 320(14), e88–e91 (2008). https://doi.org/10.1016/j.jmmm.2008.02.021

    Article  ADS  Google Scholar 

  28. W. Chérif, M. Ellouze, F. Elhalouani, A.-F. Lehlooh, Synthesis and characterization of fine particles of La0.7Ca0.3MnO3 prepared by the mechanical ball milling method. Eur. Phys. J. Plus 127(7), 1–7 (2012). https://doi.org/10.1140/epjp/i2012-12073-3

    Article  Google Scholar 

  29. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Effects of milling time on structural, electrical and ferroelectric features of mechanothermally synthesized multi-doped bismuth ferrite. Appl. Phys. A 126(3), 1–15 (2020). https://doi.org/10.1007/s00339-020-3365-3

    Article  Google Scholar 

  30. W. Boujelben, M. Ellouze, A. Cheikh-Rouhou, J. Pierre, J.C. Joubert, Effect of quenching on magnetoresistance properties in the Pr0.5Sr0.5MnO3 perovskite manganite. J. Solid State Chem. 165(2), 375–380 (2002). https://doi.org/10.1006/jssc.2002.9555

    Article  ADS  Google Scholar 

  31. A. Krichene, W. Boujelben, A. Cheikhrouhou, Quenching effects on correlation between electrical and magnetic properties in Pr0.5Sr0.5MnO3 polycrystalline manganites. Phys. B 433, 122–126 (2014). https://doi.org/10.1016/j.physb.2013.10.026

    Article  ADS  Google Scholar 

  32. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  33. M. Khlifi, M. Bejar, O.E.L. Sadek, E. Dhahri, M.A. Ahmed, E.K. Hlil, Structural, magnetic and magnetocaloric properties of the lanthanum deficient in La0.8Ca0.2−x□ xMnO3 (x= 0–0.20) manganites oxides. J. Alloys Compd. 509(27), 7410–7415 (2011). https://doi.org/10.1016/j.jallcom.2011.04.049

    Article  Google Scholar 

  34. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  35. J.M.D. Coey, M. Viret, S. Von Molnar, Mixed-valence manganites. Adv. Phys. 48(2), 167–293 (1999). https://doi.org/10.1080/000187399243455

    Article  ADS  Google Scholar 

  36. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  37. Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200(1–3), 1–23 (1999). https://doi.org/10.1016/S0304-8853(99)00352-2

    Article  ADS  Google Scholar 

  38. D. Kumar, N.K. Verma, C.B. Singh, A.K. Singh, Evolution of structural characteristics of Nd0.7Ba0.3MnO3 perovskite manganite as a function of crystallite size. AIP Conf. Proc. 2009(1), 20013 (2018). https://doi.org/10.1063/1.5052082

    Article  Google Scholar 

  39. S. Bouzidi, M.A. Gdaiem, S. Rebaoui, J. Dhahri, E.K. Hlil, Large magnetocaloric effect in La0.75Ca0.25–x Na xMnO3 (0≤ x≤ 0.10) manganites. Appl. Phys. A 126(1), 1–16 (2020). https://doi.org/10.1007/s00339-019-3219-z

    Article  Google Scholar 

  40. M. Mazaheri, M. Akhavan, Preparation and characterization of nano-polycrystalline lanthanum-based manganite (La1-yKy)0.7Ca0.3MnO3. Phys. B Condens. Matter 405(1), 72–76 (2010). https://doi.org/10.1016/j.physb.2009.08.033

    Article  ADS  Google Scholar 

  41. U. Holzwarth, N. Gibson, The Scherrer equation versus the’Debye-Scherrer equation’. Nat. Nanotechnol. 6(9), 534 (2011). https://doi.org/10.1038/nnano.2011.145

    Article  ADS  Google Scholar 

  42. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  43. I.A.U. Shah, I. Mohd, Structural stability improvement, Williamson Hall analysis and band-gap tailoring through A-site Sr doping in rare earth based double perovskite La2 NiMnO6. Rare Met. 38(9), 805–813 (2019). https://doi.org/10.1007/s12598-019-01207-4

    Article  Google Scholar 

  44. A. Dhahri, M. Jemmali, E. Dhahri, M.A. Valente, Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75Sr0.1Ca0.15MnO3 compound. J. Alloys Compd. 638, 221–227 (2015). https://doi.org/10.1016/j.jallcom.2015.01.314

    Article  Google Scholar 

  45. C.T. Rueden, J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena, K.W. Eliceiri, ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18(1), 1–26 (2017). https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  46. J. Ye, C. Bu, Z. Han, G. He, J. Li, Y. Chen, Microstructural evolution and infrared radiation property of Ca2+-Cr3+ doped LaAlO3 in the presence of SiO2. Mater. Lett. 171, 55–58 (2016). https://doi.org/10.1016/j.matlet.2016.02.031

    Article  Google Scholar 

  47. N. Choudhary, M.K. Verma, N.D. Sharma, S. Sharma, D. Singh, Correlation between magnetic and transport properties of rare earth doped perovskite manganites La0.6R0.1Ca0.3MnO3 (R= La, Nd, Sm, Gd, and Dy) synthesized by Pechini process. Mater. Chem. Phys. 242, 122482 (2020). https://doi.org/10.1016/j.matchemphys.2019.122482

    Article  Google Scholar 

  48. R. Rao, Y.Y. Han, X.C. Kan, X. Zhang, M. Wang, N.X. Qian, G.H. Zheng, Y.Q. Ma, Magnetic property under the pressure and electrical transport behavior under the magnetic field for the perovskite manganite La0.7Ca0.3MnO3. J. Alloys Compd. 837, 155476 (2020). https://doi.org/10.1016/j.jallcom.2020.155476

    Article  Google Scholar 

  49. Y. Regaieg, M. Kouba, W.C. Kouba, A. Cheikhrouhou, L. Sicard, S. Ammar-Merah, F. Herbst, Structure and magnetocaloric properties of La0.8Ag0.2−xKxMnO3 perovskite manganites. Mater. Chem. Phys. 132(2–3), 839–845 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.021

    Article  Google Scholar 

  50. I. Chihi, M. Baazaoui, S. Mahjoub, W. Cheikhrouhou-Koubaa, M. Oumezzine, K. Farah, Study of the magnetic and magnetocaloric properties of new perovskite-type materials: La0.6Ba0.2Sr0.2Mn1− xFexO3. Appl. Phys. A 125(9), 1–7 (2019). https://doi.org/10.1007/s00339-019-2909-x

    Article  Google Scholar 

  51. R. Felhi, M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Structural, magnetic, magnetocaloric and critical behavior investigations of La0.65Dy0.05Sr0. 3MnO3 manganite. J. Alloys Compd. 726, 1236–1245 (2017). https://doi.org/10.1016/j.jallcom.2017.08.080

    Article  Google Scholar 

  52. A. Dhahri, M. Jemmali, K. Taibi, E. Dhahri, E.K. Hlil, Structural, magnetic and magnetocaloric properties of La0.7Ca0.2Sr0.1Mn1−xCrxO3 compounds with x= 0, 0.05 and 0.1. J. Alloys Compd. 618, 488–496 (2015). https://doi.org/10.1016/j.jallcom.2014.08.117

    Article  Google Scholar 

  53. A. Tozri, E. Dhahri, Structural and magnetotransport properties of (La, Pr)-Ba manganites. J. Alloys Compd. 783, 718–728 (2019). https://doi.org/10.1016/j.jallcom.2018.12.303

    Article  Google Scholar 

  54. K. Dhahri, N. Dhahri, J. Dhahri, K. Taibi, E.K. Hlil, Effect of (Al, Sn) doping on structural, magnetic and magnetocaloric properties of La0.7Ca0.1Pb0.2Mn1− x− yAlxSnyO3 (0≤ x, y≤ 0.075) manganites. J. Alloys Compd. 699, 619–626 (2017). https://doi.org/10.1016/j.jallcom.2016.12.324

    Article  Google Scholar 

  55. M. Dhahri, A. Zaidi, K. Cherif, J. Dhahri, E.K. Hlil, Effect of indium substitution on structural, magnetic and magnetocaloric properties of La0.5Sm0.1Sr0.4Mn1− xInxO3 (0≤ x≤ 0.1) manganites. J. Alloys Compd. 691, 578–586 (2017). https://doi.org/10.1016/j.jallcom.2016.08.268

    Article  Google Scholar 

  56. C. Kittel, Introduction to Solid State Physics, 6th edn. (Uno, N. Tsuya, A. Morita J. Yamashita, Maruzen, 1986), pp.124–129

    Google Scholar 

  57. R.C. Sahoo, S. Das, S.K. Giri, D. Paladhi, T.K. Nath, Size modulated Griffiths phase and spin dynamics in double perovskite Sm1.5Ca0.5CoMnO6. J. Magn. Magn. Mater. 469, 161–170 (2019). https://doi.org/10.1016/j.jmmm.2018.08.060

    Article  ADS  Google Scholar 

  58. M. Bourguiba, M.A. Gdaiem, M. Chafra, E.K. Hlil, H. Belmabrouk, A. Bajahzar, Effect of titanium substitution on the structural, magnetic and magnetocaloric properties of La0.67Ba0.25Ca0.08MnO3 perovskite manganites. Appl. Phys. A 125(6), 1–16 (2019). https://doi.org/10.1007/s00339-019-2665-y

    Article  Google Scholar 

  59. P. Kameli, H. Salamati, A. Aezami, Influence of grain size on magnetic and transport properties of polycrystalline La0.8Sr0.2MnO3 manganites. J. Alloys Compd. 450(1–2), 7–11 (2008). https://doi.org/10.1016/j.jallcom.2006.10.078

    Article  Google Scholar 

  60. V. Dyakonov, A. Slawka-Waniewska, N. Nedelko, E. Zubov, V. Mikhaylov, K. Piotrowski, A. Szytuta, S. Baran, W. Bazela, Z. Kravchenko, P. Aleshkevich, A. Pashchenko, K. Dyakonov, V. Varyukhin, H. Szymczak, Magnetic, resonance and transport properties of nanopowder of of La0.7Sr0.3MnO3 manganites. J. Magn. Magn. Mater. 322(20), 3072–3079 (2010). https://doi.org/10.1016/j.jmmm.2010.05.032

    Article  ADS  Google Scholar 

  61. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82(3), 403 (1951). https://doi.org/10.1103/PhysRev.82.403

    Article  ADS  Google Scholar 

  62. P.-G. De Gennes, Effects of double exchange in magnetic crystals. Phys. Rev. 118(1), 141 (1960). https://doi.org/10.1103/PhysRev.118.141

    Article  ADS  Google Scholar 

  63. R. Thaljaoui, D. Szewczyk, Electrical and thermal properties of Pr0.6Sr0.4−xAgxMnO3 (x= 0.05 and 0.1) manganite. J. Mater. Sci. 55(16), 6761–6770 (2020). https://doi.org/10.1007/s10853-020-04484-y

    Article  ADS  Google Scholar 

  64. P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen, D.N. Argyriou, Structural effects on the magnetic and transport properties of perovskite A1− xAx′ MnO3 (x= 0.25, 0.30). Phys. Rev. B 56(13), 8265 (1997). https://doi.org/10.1103/PhysRevB.56.8265

    Article  ADS  Google Scholar 

  65. C. Cui, T.A. Tyson, Correlations between pressure and bandwidth effects in metal–insulator transitions in manganites. Appl. Phys. Lett. 84(6), 942–944 (2004). https://doi.org/10.1063/1.1646212

    Article  ADS  Google Scholar 

  66. W. A. Harrison. Electronic Structure and the Properties of Solids/Ed. by WH Freeman and Company. San Fr. (1980)

  67. A. A. Gómez Zapata. Determination of the relationship between magnetocaloric effect and electrical properties in polycrystalline samples of La0.7Ca0.3Mn1-xNixO3 (x= 0, 0.02, 0.07, 0.1). PhD Dissertation, National University of Colombia. (2019)

  68. A. Goyal, M. Rajeswari, R. Shreekala, S.E. Lofland, S.M. Bhaqat, T. Boettcher, C. Kwon, R. Ramesh, T. Venkatesana, Material characteristics of perovskite manganese oxide thin films for bolometric applications. Appl. Phys. Lett. 71(17), 2535–2537 (1997). https://doi.org/10.1063/1.120427

    Article  ADS  Google Scholar 

  69. S. Vadnala, T.D. Rao, P. Pal, S. Asthana, Study of structural effect on Eu-substituted LSMO manganite for high temperature coefficient of resistance. Phys. B Condens. Matter 448, 277–280 (2014). https://doi.org/10.1016/j.physb.2014.04.029

    Article  ADS  Google Scholar 

  70. R.J. Choudhary, A.S. Ogale, S.R. Shinde, S. Hullavard, S.B. Ogale, T. Venkatesan, R.N. Bathe, S.I. Patill, R. Kumar, Evaluation of manganite films on silicon for uncooled bolometric applications. Appl. Phys. Lett. 84(19), 3846–3848 (2004). https://doi.org/10.1063/1.1748837

    Article  ADS  Google Scholar 

  71. A. Pal, B.S. Nagaraja, K.J. Rachana, K.V. Supriya, D. Kekuda, A. Rao, C.R. Li, Y.K. Kuo, Enhancement of temperature coefficient of resistance (TCR) and magnetoresistance (MR) of La0.67–xRExCa0.33MnO3 (x= 0, 0.1; RE= Gd, Nd, Sm) system via rare-earth substitution. Mater. Res. Express 7(3), 36102 (2020). https://doi.org/10.1088/2053-1591/ab7c20

    Article  Google Scholar 

  72. S. Boufligha, N. Mahamdioua, F. Denbri, F. Meriche, S.P. Altintas, C. Terzioglu, Synthesis and experimental study of structure, magnetotransport properties and temperature coefficient of resistance of La0.7Ca0.18Ba0.12Mn0.95Sn0.05O3. J. Low Temp. Phys. (2021). https://doi.org/10.1007/s10909-021-02645-0

    Article  Google Scholar 

  73. Y. Sun, X. Xu, Y. Zhang, Variable-range hopping of small polarons in mixed-valence manganites. J. Phys. Condens. Matter 12(50), 10475 (2000). https://doi.org/10.1088/0953-8984/12/50/309

    Article  ADS  Google Scholar 

  74. M. Oumezzine, O. Peña, T. Guizouarn, R. Lebullenger, M. Oumezzine, Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0.67Ba0.33Mn0.9Cr0.1O3 manganite. J. Magn. Magn. Mater. 324(18), 2821–2828 (2012). https://doi.org/10.1016/j.jmmm.2012.04.017

    Article  ADS  Google Scholar 

  75. G. Venkataiah, P.V. Reddy, Structural, magnetic and magnetotransport behavior of some Nd-based perovskite manganites. Solid State Commun. 136(2), 114–119 (2005). https://doi.org/10.1016/j.ssc.2005.04.014

    Article  ADS  Google Scholar 

  76. M. Ziese, Searching for quantum interference effects in La0.7Ca 0.3MnO 3 films on SrTiO3. Phys. Rev. B 68(13), 132411 (2003). https://doi.org/10.1103/PhysRevB.68.132411

    Article  ADS  Google Scholar 

  77. P. Schiffer, A.P. Ramirez, W. Bao, S.-W. Cheong, Low temperature magnetoresistance and the magnetic phase diagram of La1−xCaxMnO3. Phys. Rev. Lett. 75(18), 3336 (1995). https://doi.org/10.1103/PhysRevLett.75.3336

    Article  ADS  Google Scholar 

  78. Y.K. Lakshmi, P.V. Reddy, Electrical behavior of some silver-doped lanthanum-based CMR materials. J. Magn. Magn. Mater. 321(9), 1240–1245 (2009). https://doi.org/10.1016/j.jmmm.2008.11.012

    Article  ADS  Google Scholar 

  79. A. Banerjee, S. Pal, S. Bhattacharya, B.K. Chaudhuri, H.D. Yang, Particle size and magnetic field dependent resistivity and thermoelectric power of La0.5Pb0.5MnO3 above and below metal–insulator transition. J. Appl. Phys. 91(8), 5125–5134 (2002). https://doi.org/10.1063/1.1459618

    Article  ADS  Google Scholar 

  80. R.L. Zhang, W.H. Song, Y.Q. Ma, J. Yang, B.C. Zhao, Z.G. Sheng, J.M. Dai, Y.P. Sun, Influence of Co doping on the charge-ordering state of the bilayered manganite LaSr2Mn2O7. Phys. Rev. B 70(22), 224418 (2004). https://doi.org/10.1103/PhysRevB.70.224418

    Article  ADS  Google Scholar 

  81. G. Huo, Q. Yang, F. Dong, D. Song, Structural, magnetic and electrical transport properties for a series of La1−xSrxFe1−xMnxO3 (0.3≤ x≤ 0.7) compounds. J. Alloys Compd. 464(1–2), 42–46 (2008). https://doi.org/10.1016/j.jallcom.2007.10.031

    Article  Google Scholar 

  82. N. Mahamdioua, A. Amira, Y. Boudjadja, A. Saoudel, S.P. Altintas, A. Varilci, C. Terzioglu, Magneto-conductive mechanisms in the La-site doped double-layered La1.4Ca1.6Mn2O7 manganites. Phys. B Condens. Matter 500, 77–84 (2016). https://doi.org/10.1016/j.physb.2016.07.011

    Article  ADS  Google Scholar 

  83. D. Joung, S.I. Khondaker, Efros-Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon s p 2 fraction. Phys. Rev. B 86(23), 235423 (2012). https://doi.org/10.1103/PhysRevB.86.235423

    Article  ADS  Google Scholar 

  84. S. Hcini, S. Khadhraoui, S. Zemni, A. Triki, H. Rahmouni, M. Boudard, M. Oumezzine, Percolation model of the temperature dependence of resistivity in Pr0.67A0.33MnO3 (A= Ba or Sr) manganites. J. Supercond. Nov. Magn. 26(6), 2181–2185 (2013). https://doi.org/10.1007/s10948-012-1812-x

    Article  Google Scholar 

  85. Z. Zainuddin, A.H. Shaari, Structural and electrical transport properties of La0.67Ba0.33Mn1-yTiyO3 ceramics. Adv. Mater. Res. 501, 86–90 (2012). https://doi.org/10.4028/www.scientific.net/amr.501.86

    Article  Google Scholar 

  86. A. Modi, M.A. Bhat, D.K. Pandey, S. Bhattacharya, N.K. Gaur, G.S. Okram, Structural, magnetotransport and thermal properties of Sm substituted La0.7−xSmxBa0.3MnO3 (0≤ x≤ 0.2) manganites. J. Magn. Magn. Mater. 424, 459–466 (2017). https://doi.org/10.1016/j.jmmm.2016.10.048

    Article  ADS  Google Scholar 

  87. M. Viret, L. Ranno, J.M.D. Coey, Magnetic localization in mixed-valence manganites. Phys. Rev. B 55(13), 8067 (1997). https://doi.org/10.1103/PhysRevB.55.8067

    Article  ADS  Google Scholar 

  88. V. Ravindranath, M.R. Rao, G. Rangarajan, Y. Lu, J. Klein, R. Klingeler, S. Uhlenbruck, B. Buchner, R. Gross, Magnetotransport studies and mechanism of Ho-and Y-doped La0.7Ca0.3MnO3. Phys. Rev. B 63(18), 184434 (2001). https://doi.org/10.1103/PhysRevB.63.184434

    Article  ADS  Google Scholar 

  89. M. Ziese, C. Srinitiwarawong, Polaronic effects on the resistivity of manganite thin films. Phys. Rev. B 58(17), 11519 (1998). https://doi.org/10.1103/PhysRevB.58.11519

    Article  ADS  Google Scholar 

  90. A. Modi, M.A. Bhat, S. Bhattacharya, N.K. Gaur, Investigation of structural and some physical properties of Cr substituted polycrystalline Eu0.5Sr0.5Mn1−xCrxO3 (0≤ x≤ 0.1) manganites. J. Mater. Sci. Mater. Electron. 27(9), 8899–8905 (2016). https://doi.org/10.1007/s10854-016-4916-4

    Article  Google Scholar 

  91. C.L. Zhang, X.J. Chen, C.C. Almasan, J.S. Gardner, J.L. Sarrao, Low-temperature electrical transport in bilayer manganite La1.2Sr1.8Mn2O7. Phys. Rev. B 65(13), 134439 (2002). https://doi.org/10.1103/PhysRevB.65.134439

    Article  ADS  Google Scholar 

  92. X.J. Chen, C.L. Zhang, J.S. Gardner, J.L. Sarrao, C.C. Almasan, Variable-range-hopping conductivity of the half-doped bilayer manganite LaSr2Mn2O7. Phys. Rev. B 68(6), 64405 (2003). https://doi.org/10.1103/PhysRevB.68.064405

    Article  ADS  Google Scholar 

  93. J.C. Debnath, J. Wang, Magnetic and electrical response of Co-doped La0.7Ca0.3MnO3 manganites/insulator system. Phys. B 504, 58–62 (2017). https://doi.org/10.1016/j.physb.2016.10.017

    Article  ADS  Google Scholar 

  94. A.M. Ahmed, G. Papavassiliou, H.F. Mohamed, E.M.M. Ibrahim, Structural, magnetic and electronic properties on the Li-doped manganites. J. Magn. Magn. Mater. 392, 27–41 (2015). https://doi.org/10.1016/j.jmmm.2015.05.004

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the General Direction of Scientific Research and of Technological Development of Algeria (DGRSDT/MESRS).

Author information

Authors and Affiliations

Authors

Contributions

NM conceived of the presented idea. IB, FM, and NM prepared the samples. NM, FM conceived and planned the experiments. IB, FD, SPA and CT, carried out the structural, microstructural and magneto-electrical measurements. JAA and JLM carried out the magnetic measurements. IB simulated and discussed the refinement of the XRD patterns. IB, FM and NM carried out and discussed the simulation results of the magnetic and the magneto-electrical experimental data. IB, FM and NM wrote the manuscript. All authors discussed the results, contributed, and commented on the final manuscript. FM and NM supervised the project.

Corresponding author

Correspondence to Faiza Meriche.

Ethics declarations

Conflict of interest

The authors declare that there is no known conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belal, I., Meriche, F., Mahamdioua, N. et al. Structural, electrical, magnetic and magnetotransport properties of La0.7Ca0.18Ba0.12Mn0.95Sn0.05O3 manganite prepared with different quenching processes. Appl. Phys. A 129, 26 (2023). https://doi.org/10.1007/s00339-022-06302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06302-5

Keywords

Navigation