Skip to main content
Log in

Optical coalition in the electrical and magnetic induction of Dy and Tb-doped BFO-based multiferroic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

BiFeO3-based ferroelectromagnetic materials have fulfilled the demand for optically active material for photovoltaic applications. The substitution of rare earth material Dy and Tb within BFO-based multiferroic, enhance the electromagnetic induction within the same molecule to heighten the photo generation of electron–hole pairs. X-Ray pattern confirms the rhombohedral crystal symmetry with space group (R3C:H) of the prepared samples. The dielectric constant shows a high-temperature anomaly along with a broad maximum peak of the respective ferroelectric to the paraelectric phase transition. AC conductivity of both samples increases with a rise in temperature, which confirms the Negative Temperature Coefficient of Resistance behaviour. A-site substitution of Dy and Tb ions endorses that the ceramics exhibit the transition from antiferromagnetism to ferromagnetism in the ceramics. These multiferroic properties are attributed to the enhanced magnetoelectric interaction, which results from the Dy and Tb substitution-induced destruction of the spin cycloid. UV–Vis spectrum demonstrates enhanced absorption capability, especially in the visible light region. Photoluminescence spectrum reveals the presence of surface oxygen vacancies that could capture photo-induced electrons.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15

Similar content being viewed by others

References

  1. J. Hemberger et al., Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature 434(7031), 364–367 (2005)

    Article  ADS  Google Scholar 

  2. M. Shandilya et al., Effect of addition of zinc ferrite on dielectric and magnetic properties of (Ba, Ca) TiO3 ceramics. Integr. Ferroelectr. 185(1), 147–154 (2017)

    Article  ADS  Google Scholar 

  3. S. Ghosal et al., Importance of Hubbard U parameter to explore accurate electronic and optical behaviour of BiFeO3. J Phy D 11(2), 231 (2022)

    Google Scholar 

  4. M. Fiebig et al., Observation of coupled magnetic and electric domains. Nature 419(6909), 818–820 (2002)

    Article  ADS  Google Scholar 

  5. D.V. Efremov, J. van den Brink, D.I. Khomskii, Bond- versus site-centred ordering and possible ferroelectricity in manganites. Nat Mater 3(12), 853–856 (2004)

    Article  ADS  Google Scholar 

  6. G.A. Kaur et al., Structural and ferroelectric growth of Ba0 85Mg0 15TiO3–Ga2O3 ceramic through hydrothermal method. J Mater Sci 11(2), 111–114 (2021)

    Google Scholar 

  7. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)

    Article  Google Scholar 

  8. Rana G. et al. Investigation of structural and morphological properties of BaZr0.10Ti0.90O3/Ga2O3 nanostructures. AIP Conf. Proceed. 2357, 050002 (2022)

    Article  Google Scholar 

  9. S. Ali et al., Efficient charge storage capability of BiFeO<sub>3</sub>-based Bi-phase nanocomposites. ECS J Solid State Sci Technol 11(2), 023001 (2022)

    Article  ADS  Google Scholar 

  10. S. Kumar et al., Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym. Bull. (2022). https://doi.org/10.1007/s00289-022-04417-6

    Article  Google Scholar 

  11. R. Agarwal et al., Modulation of oxygen vacancies assisted ferroelectric and photovoltaic properties of (Nd, V) co-doped BiFeO3 thin films. J. Phys. D Appl. Phys. 51(27), 275303 (2018)

    Article  Google Scholar 

  12. K. Li et al., Modulating light absorption and multiferroic properties of BiFeO<sub>3</sub>-based ferroelectric films by the introduction of ZnO layer. Mater Res Exp 9(3), 036402 (2022)

    Article  Google Scholar 

  13. P. Sharma, A. Kumar, D. Varshney, Rare earth (La) and metal ion (Pb) substitution induced structural and multiferroic properties of bismuth ferrite. J Adv Cer 4(4), 292–299 (2015)

    Article  Google Scholar 

  14. R. Mazumder, A. Sen, Effect of Pb-doping on dielectric properties of BiFeO3 ceramics. J. Alloy. Compd. 475(1–2), 577–580 (2009)

    Article  Google Scholar 

  15. S. Song et al., Enhancement of ferromagnetism in a multiferroic La-Co co-doped BiFeO3 thin films. J. Phys. D: Appl. Phys. 55, 355002 (2022)

    Article  ADS  Google Scholar 

  16. J. Wang et al., Ferroelectric composite artificially-structured functional material: multifield control for tunable functional devices. J. Phys. D Appl. Phys. 55(30), 303002 (2022)

    Article  ADS  Google Scholar 

  17. P. Kumar, M. Kar, Effect of structural phase transition on magnetic and optical properties of co-substituted bismuth ferrite. Mater. Sci. Semicond. Proc. 31, 262–271 (2015)

    Article  Google Scholar 

  18. M. Rhaman et al., Bandgap tuning of samarium and cobalt co-doped bismuth ferrite nanoparticles. Mater. Sci. Eng., B 263, 114842 (2021)

    Article  Google Scholar 

  19. M. Lal et al., Study of structural, electrical and magnetic properties of 1–x (Ba 096 Ca 004 TiO 3)− x (BiFeO 3) ceramics composites. J Mater Sci 29(16), 13984–14002 (2018)

    Google Scholar 

  20. G.A. Kaur, S. Kumar, M. Shandilya, Fabrication of piezoelectric nanogenerator based on P (VDF-HFP) electrospun nanofiber mat-impregnated lead-free BCZT nanofillers. J. Mater. Sci.: Mater. Electron. 31(22), 20303–20314 (2020)

    Google Scholar 

  21. M. Shandilya, G.A. Kaur, R. Rai, Low temperature consequence on structural and impedance properties of BST ceramics via sol-hydrothermal method. Mater. Chem. Phys. 263, 124422 (2021)

    Article  Google Scholar 

  22. S. Hohenberger et al., Effect of double layer thickness on magnetoelectric coupling in multiferroic BaTiO3-Bi0 95Gd0 05FeO3 multilayers. J Phy D 51(18), 184002 (2018)

    Article  ADS  Google Scholar 

  23. Banerjee, P., A. Franco Jr, and R. Xiao, 2020 Effects of Y and Ni co-doping in Bi2Fe4O9-BiFeO3 based multiferroic ceramics. Materials Today: Proceedings.

  24. Kumari, P., et al., High dielectric materials for supercapacitors, Nova Science Publishers, Inc., pp 95–135 (2017)

  25. D. Kothari et al., Multiferroic properties of polycrystalline Bi 1–x Ca x Fe O 3. Appl. Phys. Lett. 91(20), 202505 (2007)

    Article  ADS  Google Scholar 

  26. B. Ramachandran et al., Weak ferromagnetic ordering in Ca doped polycrystalline BiFeO3. J. Appl. Phys. 111(2), 023910 (2012)

    Article  ADS  Google Scholar 

  27. Thakur, S., M. Shandilya, and R. Rai, Development of double perovskite electroceramics, Nova Science Publishers, Inc, pp 137–172 (2017)

  28. Z. Cheng et al., Improved ferroelectric properties in multiferroic Bi Fe O 3 thin films through La and Nb codoping. Phys. Rev. B 77(9), 092101 (2008)

    Article  ADS  Google Scholar 

  29. H. Dai et al., Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics. Ceram. Int. 40(10), 15617–15622 (2014)

    Article  Google Scholar 

  30. W. Zhou et al., Effects of Sm and Mn co-doping on structural, optical and magnetic properties of BiFeO3 films prepared by a sol–gel technique. Mater. Lett. 144, 93–96 (2015)

    Article  Google Scholar 

  31. A. Sen et al., Influence of Ba and Mo co-doping on the structural, electrical, magnetic and optical properties of BiFeO3 ceramics. Mater Res Exp 7(1), 016312 (2020)

    Article  Google Scholar 

  32. N. Hur et al., Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429(6990), 392–395 (2004)

    Article  ADS  Google Scholar 

  33. G. Achenbach, W. James, R. Gerson, Preparation of Single-Phase Polycrystalline BiFeO3. J. Am. Ceram. Soc. 50(8), 437–437 (1967)

    Article  Google Scholar 

  34. D.H. Kim, et al., Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films. App. Phy. Lett. 92(1), 012911 (2008)

    Article  ADS  Google Scholar 

  35. S. Yu-Quan et al., Multiferroic properties in terbium orthoferrite. Chin. Phys. B 23(7), 077505 (2014)

    Article  ADS  Google Scholar 

  36. R. Rai et al., Study of electrical and magnetic properties of Ba, La and Pb doped Bi1− x− yDyxCyFe1− yTiyO3 perovskite ceramics. Solid State Commun. 180, 56–63 (2014)

    Article  ADS  Google Scholar 

  37. R. Rai et al., Dielectric and magnetic properties of Ba- La-and Pb-doped Bi 08 Gd 01 M 01 Fe 09 Ti 01 O 3 perovskite ceramics. J Adv Dielect. 4(02), 1450010 (2014)

    Article  Google Scholar 

  38. I. Sosnowska, T.P. Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C: Solid State Phys. 15(23), 4835 (1982)

    Article  ADS  Google Scholar 

  39. S. Thakur et al., To study the effect of low temperature crystal growth on the structural and ferroelectric properties of lead-free BCT-BZT ceramic. Ferroelectr. Lett. Sect. 47(4–6), 76–89 (2020)

    Article  ADS  Google Scholar 

  40. S. Sharma, M. Shandilya, R. Rai, Effect of Tb, Ti co-doping on the electrical and magnetic properties of (Bi, La) FeO3 multiferroic ceramics. J. Mater. Sci.: Mater. Electron. 26(12), 9484–9494 (2015)

    Google Scholar 

  41. G.A. Kaur, et al. Effect of addition of Ga2O3 on structural and morphological properties of Ba0. 85Ca0. 15Zr0. 10Ti0. 90O3 by sol-hydrothermal method. in AIP Conference Proceedings. AIP Conf. Proceed. 2357, 050001 (2022)

    Article  Google Scholar 

  42. A.L. Patterson, The Scherrer Formula for X-Ray particle size determination. Phys. Rev. 56(10), 978–982 (1939)

    Article  MATH  ADS  Google Scholar 

  43. S.K. Srivastav, N.S. Gajbhiye, Low temperature synthesis, structural, optical and magnetic properties of bismuth ferrite nanoparticles. J. Am. Ceram. Soc. 95(11), 3678–3682 (2012)

    Article  Google Scholar 

  44. M. Arora, M. Kumar, Structural, magnetic and optical properties of Ce substituted BiFeO3 nanoparticles. Ceram. Int. 41(4), 5705–5712 (2015)

    Article  Google Scholar 

  45. G.A. Kaur et al., Structural and ferroelectric growth of Ba0 85Mg0 15TiO3–Ga2O3 ceramic through hydrothermal method. J Mater Sci Mater Elect. 32(18), 23631–23644 (2021)

    Article  Google Scholar 

  46. B.H. Toby, R factors in Rietveld analysis: How good is good enough? Powder Diffr. 21(1), 67–70 (2006)

    Article  ADS  Google Scholar 

  47. S. Kumar, et al. 2022 Influence of Ga2O3 on structural and morphological properties of lead-free BCT at low temperature. AIP Conf. Proceed. 2357, 050003 (2022)

    Article  Google Scholar 

  48. S. Kumar, et al., 2022. A very low temperature growth of BaTiO3 nanoparticles by sol-hydrothermal method. Phys. Status Solidi. 219(23), 2200238 (2022)

    Article  ADS  Google Scholar 

  49. J. Rout, R. Choudhary, Structural, electrical and magnetic behavior of mechanothermally synthesized multidoped bismuth ferrite. Ceram. Int. 44(10), 11543–11553 (2018)

    Article  Google Scholar 

  50. Y. Hong et al., Effect of octahedron tilt on the structure and magnetic properties of bismuth ferrite. J Adv Cer 9(5), 641–646 (2020)

    Article  Google Scholar 

  51. E.A. Patterson et al., Electromechanical strain in Bi (Zn1/2Ti1/2) O3–(Bi1/2Na1/2) TiO3–(Bi1/2K1/2) TiO3 solid solutions. J. Appl. Phys. 111(9), 094105 (2012)

    Article  ADS  Google Scholar 

  52. G.A. Kaur et al., Structural and optical amendment of PVDF into CQDs through high temperature calcination process. Mater. Lett. 304, 130616 (2021)

    Article  Google Scholar 

  53. M. Muneeswaran et al., Structural, optical, and multiferroic properties of single phased BiFeO3. Appl. Phys. A 114(3), 853–859 (2014)

    Article  ADS  Google Scholar 

  54. R. Rai et al., Study of electrical and magnetic properties of Ba, La and Pb doped Bi 1–x− y Dy x C y Fe 1− y Ti y O 3 perovskite ceramics. Solid State Commun. 180, 56–63 (2014)

    Article  ADS  Google Scholar 

  55. N. Sahu, M. Kar, S. Panigrahi, Rietveld refinement, microstructure and electrical properties of PbTiO 3 ceramic materials. Arch Phys Res 1, 75–87 (2010)

    Google Scholar 

  56. G. Jin, J. Chen, J. Cheng, Investigation of the (1–x)(Bi 0.85 La 0.15) FeO 3–xPbTiO 3 multilayered ceramics by tape casting. Ceram. Int. 41, S314–S318 (2015)

    Article  Google Scholar 

  57. A.L. Kholkin et al., Anomalous polarization inversion in ferroelectrics via scanning force microscopy. Nanotechnology 18(9), 095502 (2007)

    Article  ADS  Google Scholar 

  58. R. Rai et al., Enhanced ferroelectric and magnetic properties of perovskite structured Bi1−x−yGdxLayFe1−yTiyO3 magnetoelectric ceramics. J. Phys. Chem. Solids 74(7), 905–912 (2013)

    Article  ADS  Google Scholar 

  59. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44(1), 55–61 (1982)

    Article  ADS  Google Scholar 

  60. P. Uniyal, K.L. Yadav, Observation of the room temperature magnetoelectric effect in Dy doped BiFeO 3. J. Phys.: Condens. Matter 21(1), 012205 (2009)

    ADS  Google Scholar 

  61. A. Azam et al., Study of electrical properties of nickel doped SnO2 ceramic nanoparticles. J. Alloy. Compd. 506(1), 237–242 (2010)

    Article  Google Scholar 

  62. T.-J. Park et al., Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles. Nano Lett. 7(3), 766–772 (2007)

    Article  ADS  Google Scholar 

  63. D. Kothari et al., Multiferroic properties of polycrystalline Bi Ca x FeO 3. Appl. Phys. Lett. 91, 202505 (2007)

    Article  ADS  Google Scholar 

  64. V. Shvartsman et al., Large bulk polarization and regular domain structure in ceramic BiFeO3. Appl. Phys. Lett. 90(17), 172115–172115 (2007)

    Article  ADS  Google Scholar 

  65. W. Eerenstein et al., Comment on “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures.” Science 307(5713), 1203 (2005)

    Article  Google Scholar 

  66. A. Sinha, A. Dutta, Structural, optical, and electrical transport properties of some rare-earth-doped nickel ferrites: A study on effect of ionic radii of dopants. J. Phys. Chem. Solids 145, 109534 (2020)

    Article  Google Scholar 

  67. V.J. Angadi et al., Magnetic properties of larger ionic radii samarium and gadalonium doped manganese zinc ferrite nanoparticles prepared by solution combustion method. J. Magn. Magn. Mater. 529, 167899 (2021)

    Article  Google Scholar 

  68. S. Godara et al., Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route. J Asian Cer Soc 2(4), 416–421 (2014)

    Article  Google Scholar 

  69. V. Sharma et al., Growth mechanism of rGO/CDs by electrospun calcination process: Structure and application. FlatChem 24, 100195 (2020)

    Article  Google Scholar 

  70. N. Zhang et al., Enhanced visible light photocatalytic activity of Gd-doped BiFeO 3 nanoparticles and mechanism insight. Sci. Rep. 6(1), 1–11 (2016)

    Google Scholar 

  71. S.P. Pattnaik et al., Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles. J. Nanopart. Res. 20(1), 1–15 (2018)

    Article  Google Scholar 

  72. V. Kumar, S. Singh, Improved structure stability, optical and magnetic properties of Ca and Ti co-substituted BiFeO3 nanoparticles. Appl. Surf. Sci. 386, 78–83 (2016)

    Article  ADS  Google Scholar 

  73. S. Thakur, O. Pandey, K. Singh, Structural and optical properties of Bi1−xAxFeO3 (A= Sr, Ca; 040⩽ x⩽ 055). J Mole Struct. 1074, 186–192 (2014)

    Article  ADS  Google Scholar 

  74. V. Singh, S. Sharma, R. Dwivedi, Improved dielectric, magnetic and optical properties of Pr and Ti co-substituted BFO ceramics. J. Alloy. Compd. 747, 611–620 (2018)

    Article  Google Scholar 

  75. K. Prashanthi, G. Thakur, T. Thundat, Surface enhanced strong visible photoluminescence from one-dimensional multiferroic BiFeO3 nanostructures. Surf. Sci. 606(19–20), L83–L86 (2012)

    Article  ADS  Google Scholar 

  76. M. Nadeem et al., Significant enhancement in photocatalytic performance of Ni doped BiFeO3 nanoparticles. Mater Res Express 5(6), 065506 (2018)

    Article  ADS  Google Scholar 

  77. N. Miriyala, K. Prashanthi, T. Thundat, Oxygen vacancy dominant strong visible photoluminescence from nanotubes. Phys. Status Solidi 7(9), 668–671 (2013)

    Google Scholar 

  78. Y. Yao et al., Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ. Sci. Technol. 42(13), 4952–4957 (2008)

    Article  ADS  Google Scholar 

  79. K.S. Kumar et al., Structural, magnetic, and photoluminescence properties of BiFeO 3: Er-doped nanoparticles prepared by sol-gel technique. J. Supercond. Novel Magn. 32(4), 1035–1042 (2019)

    Article  Google Scholar 

Download references

Funding

HP Council of Science, Technology and Environment (HIMCOSTE), STC/F(8)-2(R&D-20–21)-129 supported this work by providing the facilities and financial support to undertake the investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Shandilya.

Ethics declarations

Conflicts of interests

The authors confirm that there are no conflicts of interest and that the manuscript has not been published elsewhere, is not under editorial review for publication elsewhere, and is not being submitted simultaneously to another journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Thakur, S., Kaur, G.A. et al. Optical coalition in the electrical and magnetic induction of Dy and Tb-doped BFO-based multiferroic. Appl. Phys. A 129, 21 (2023). https://doi.org/10.1007/s00339-022-06296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06296-0

Keywords

Navigation