Skip to main content
Log in

NbO2-based locally active memristors: from physical mechanisms to performance optimization

  • S.i. : 50th Anniversary of Applied Physics
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Negative differential resistance (NDR) characteristic in NbO2-based memristors endows them with the role of selectors, steep-slope transistors, or artificial neurons. However, the underlying microscopic mechanisms involved in electrical operation remain controversial. Meanwhile, the device performance of NbO2-based memristors is still unsatisfactory and needs to be further optimized to meet the demands of practical applications. In this article, we review the different types of mechanistic explanations and corresponding physical models for the NDR behavior of NbO2 devices. The role of material-independent pure electronic conduction mechanism and material-specific insulator–metal transition in triggering the NDR behavior is overviewed. We discuss the pros and cons of NbO2-based memristors for selector or neuron applications, respectively. Moreover, starting from the microscopic mechanisms, we emphasize the optimization methods of the NbO2 device’s critical properties, such as reducing the forming and switching voltages and improving the selectivity and uniformity. Also, the dilemma of co-optimizing the device’s forming voltage and selectivity is discussed. This review illustrates the underlying mechanisms of NDR behavior in NbO2-based local active memristors, pointing out the possible direction for device optimization and thus promoting the progress of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. X. Ma, Y. Chen, J. Lee, C. Yang, X. Cui, In situ formation of NbOx@NbN microcomposites: seeking potential in photocatalytic and Li-ion battery applications. New J. Chem. 42, 1300–1308 (2018)

    Google Scholar 

  2. J. Hulm, C. Jones, R. Hein, J. Gibson, Superconductivity in the TiO and NbO systems. J. Low Temp. Phys. 7, 291–307 (1972)

    ADS  Google Scholar 

  3. E. Moshopoulou, P. Bordet, J. Capponi, Superstructure and superconductivity in Li1−xNbO2 (x≈0.7) single crystals. Phys. Rev. B. 59, 9590 (1999)

    ADS  Google Scholar 

  4. Q. Luo, X. Zhang, J. Yu, W. Wang, T. Gong, X. Xu, J. Yin, P. Yuan, L. Tai, D. Dong, Memory switching and threshold switching in a 3D nanoscaled NbOx system. IEEE Electr. Device Lett. 40, 718–721 (2019)

    ADS  Google Scholar 

  5. A.B. Posadas, A. O’Hara, S. Rangan, R.A. Bartynski, A.A. Demkov, Band gap of epitaxial in-plane-dimerized single-phase NbO2 films. Appl. Phys. Lett. 104, 092901 (2014)

    ADS  Google Scholar 

  6. H. Park, D. Lee, T. Song, High capacity monoclinic Nb2O5 and semiconducting NbO2 composite as high-power anode material for Li-ion batteries. J. Power Sources. 414, 377–382 (2019)

    ADS  Google Scholar 

  7. J.A. Roberson, R.A. Rapp, Electrical properties of NbO and NbO2. J. Phys. Chem. Solids. 30, 1119–1124 (1969)

    ADS  Google Scholar 

  8. T. Okamoto, S. Minomura, Pressure-induced phase transition of NbO2. J. Phys. Soc. Jpn. 50, 3661–3663 (1981)

    ADS  Google Scholar 

  9. A. O’Hara, T.N. Nunley, A.B. Posadas, S. Zollner, A. Demkov, Electronic and optical properties of NbO2. J. Appl. Phys. 116, 213705 (2014)

    ADS  Google Scholar 

  10. T. Joshi, T.R. Senty, P. Borisov, A.D. Bristow, D. Lederman, Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices. J. Phys. D: Appl. Phys. 48, 335308 (2015)

    Google Scholar 

  11. S. Li, X. Liu, S.K. Nandi, S.K. Nath, R.G. Elliman, Origin of current-controlled negative differential resistance modes and the emergence of composite characteristics with high complexity. Adv. Funct. Mater. 29, 1905060 (2019)

    Google Scholar 

  12. S.K. Nandi, S. Li, X. Liu, R.G. Elliman, Temperature dependent frequency tuning of NbOx relaxation oscillators. Appl. Phys. Lett. 111, 202901 (2017)

    ADS  Google Scholar 

  13. S. Lee, J. Yoo, J. Park, H. Hwang, Understanding of the abrupt resistive transition in different types of threshold switching devices from materials perspective. IEEE Trans. Electron Dev. 67, 2878–2883 (2020)

    ADS  Google Scholar 

  14. Q. Luo, J. Yu, X. Zhang, K. Xue, J. Yuan, Y. Cheng, T. Gong, H. Lv, X. Xu, P. Yuan, Nb1-xO2 based Universal Selector with Ultra-high Endurance (> 1012), high speed (10 ns) and Excellent Vth Stability. in Proc. Symp. VLSI Technol. (VLSIT). pp. T236-T237 (2019)

  15. J. Park, T. Hadamek, A.B. Posadas, E. Cha, A.A. Demkov, H. Hwang, Multi-layered NiOy/NbOx/NiOy fast drift-free threshold switch with high Ion/Ioff ratio for selector application. Sci. Rep. 7, 1–8 (2017)

    Google Scholar 

  16. Y. Ding, Y. Zhang, X. Zhang, P. Chen, Z. Zhang, Y. Yang, L. Cheng, C. Mu, M. Wang, D. Xiang, Engineering spiking neurons using threshold switching devices for high-efficient neuromorphic computing. Front. Neurosci. 15, 786694 (2021)

    Google Scholar 

  17. D. Geppert, A new negative-resistance device. Proc. IEEE 51, 223–223 (1963)

    Google Scholar 

  18. D. Ielmini, Y. Zhang, Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007)

    ADS  Google Scholar 

  19. F. Chudnovskii, L. Odynets, A. Pergament, G. Stefanovich, Electroforming and switching in oxides of transition metals: the role of metal-insulator transition in the switching mechanism. J. Solid State Chem. 122, 95–99 (1996)

    ADS  Google Scholar 

  20. J.B. Goodenough, Narrow-band electrons in transition-metal oxides. Czech. J. Phys. B. 17, 304–336 (1967)

    ADS  Google Scholar 

  21. N.F. Mott, Metal-insulator transition. Rev. Mod. Phys. 40, 677 (1968)

    ADS  Google Scholar 

  22. M.J. Wahila, G. Paez, C.N. Singh, A. Regoutz, S. Sallis, M.J. Zuba, J. Rana, M.B. Tellekamp, J.E. Boschker, T. Markurt, Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2. Phys. Rev. Mater. 3, 074602 (2019)

    Google Scholar 

  23. F. Grandi, A. Amaricci, M. Fabrizio, Unraveling the Mott-Peierls intrigue in vanadium dioxide. Phys. Rev. Res. 2, 013298 (2020)

    Google Scholar 

  24. M.D. Pickett, R.S. Williams, Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23, 215202 (2012)

    ADS  Google Scholar 

  25. X. Liu, S. Li, S.K. Nandi, D.K. Venkatachalam, R.G. Elliman, Threshold switching and electrical self-oscillation in niobium oxide films. J. Appl. Phys. 120, 124102 (2016)

    ADS  Google Scholar 

  26. C. Funck, S. Menzel, N. Aslam, H. Zhang, A. Hardtdegen, R. Waser, S. Hoffmann-Eifert, Multidimensional simulation of threshold switching in NbO2 based on an electric field triggered thermal runaway model. Adv. Electron. Mater. 2, 1600169 (2016)

    Google Scholar 

  27. X. Liu, S.M. Sadaf, M. Son, J. Shin, J. Park, J. Lee, S. Park, H. Hwang, Diode-less bilayer oxide (WOx-NbOx) device for cross-point resistive memory applications. Nanotechnology 22, 475702 (2011)

    ADS  Google Scholar 

  28. H. Wylezich, H. Mähne, J. Rensberg, C. Ronning, P. Zahn, S. Slesazeck, T. Mikolajick, Local ion irradiation-induced resistive threshold and memory switching in Nb2O5/NbOx films. ACS Appl. Mater. Inter. 6, 17474–17480 (2014)

    Google Scholar 

  29. K. Seta, K. Naito, Calorimetric study of the phase transition in doped NbO2. J. Chem. Thermodyn. 14, 937–949 (1982)

    Google Scholar 

  30. T. Sakata, K. Sakata, G. Höfer, T. Horiuchi, Preparation of NbO2 single crystals by chemical transport reaction. J. Cryst. Growth. 12, 88–92 (1972)

    ADS  Google Scholar 

  31. S. Kumar, Z. Wang, N. Davila, N. Kumari, K.J. Norris, X. Huang, J.P. Strachan, D. Vine, A. Kilcoyne, Y. Nishi, Physical origins of current and temperature controlled negative differential resistances in NbO2. Nat. Commun. 8, 1–6 (2017)

    Google Scholar 

  32. S.K. Nandi, S.K. Nath, A.E. El-Helou, S. Li, X. Liu, P.E. Raad, R.G. Elliman, Current localization and redistribution as the basis of discontinuous current controlled negative differential resistance in NbOx. Adv. Funct. Mater. 29, 1906731 (2019)

    Google Scholar 

  33. S. Kumar, R.S. Williams, Z. Wang, Third-order nanocircuit elements for neuromorphic engineering. Nature 585, 518–523 (2020)

    ADS  Google Scholar 

  34. S. Shin, T. Halpern, P. Raccah, High-speed high-current field switching of NbO2. J. Appl. Phys. 48, 3150–3153 (1977)

    ADS  Google Scholar 

  35. S. Slesazeck, H. Mähne, H. Wylezich, A. Wachowiak, J. Radhakrishnan, A. Ascoli, R. Tetzlaff, T. Mikolajick, Physical model of threshold switching in NbO2 based memristors. RCS Adv. 5, 102318–102322 (2015)

    Google Scholar 

  36. G.A. Gibson, S. Musunuru, J. Zhang, K. Vandenberghe, J. Lee, C. Hsieh, W. Jackson, Y. Jeon, D. Henze, Z. Li, An accurate locally active memristor model for S-type negative differential resistance in NbOx. Appl. Phys. Lett. 108, 023505 (2016)

    ADS  Google Scholar 

  37. G.A. Gibson, Designing negative differential resistance devices based on self-heating. Adv. Funct. Mater. 28, 1704175 (2018)

    Google Scholar 

  38. Z. Wang, S. Kumar, R.S. Williams, Y. Nishi, H.-S.P. Wong, Intrinsic limits of leakage current in self-heating-triggered threshold switches. Appl. Phys. Lett. 114, 183501 (2019)

    ADS  Google Scholar 

  39. S.K. Nath, S.K. Nandi, T. Ratcliff, R.G. Elliman, Engineering the threshold switching response of Nb2O5-based memristors by Ti doping. ACS Appl. Mater. Inter. 13, 2845–2852 (2021)

    Google Scholar 

  40. S.K. Nath, S.K. Nandi, A. El-Helou, X. Liu, S. Li, T. Ratcliff, P.E. Raad, R.G. Elliman, Schottky-barrier-induced asymmetry in the negative-differential-resistance response of Nb/NbOx/Pt cross-point devices. Phys. Rev. Appl. 13, 064024 (2020)

    ADS  Google Scholar 

  41. X. Zhao, A. Chen, J. Ji, D. Wu, Y. Gan, C. Wang, G. Ma, C.-Y. Lin, C.-C. Lin, N. Liu, Ultrahigh uniformity and stability in NbOx-based selector for 3-D memory by using Ru electrode. IEEE Trans. Electron Dev. 68, 2255–2259 (2021)

    ADS  Google Scholar 

  42. J. Park, E. Cha, I. Karpov, H. Hwang, Dynamics of electroforming and electrically driven insulator-metal transition in NbOx selector. Appl. Phys. Lett. 108, 232101 (2016)

    ADS  Google Scholar 

  43. S. Li, X. Liu, S.K. Nandi, R.G. Elliman, Anatomy of filamentary threshold switching in amorphous niobium oxide. Nanotechnology 29, 375705 (2018)

    Google Scholar 

  44. J. Lee, E. Cha, Y. Kim, B. Chae, J. Kim, S. Lee, H. Hwang, C. Park, A study of threshold switching of NbO2 using atom probe tomography and transmission electron microscopy. Micron 79, 101–109 (2015)

    Google Scholar 

  45. Y. Park, D. Yoon, K. Fukutani, R. Stania, J. Son, Steep-slope threshold switch enabled by pulsed-laser-induced phase transformation. ACS Appl. Mater. Inter. 11, 24221–24229 (2019)

    Google Scholar 

  46. P. Chen, X. Zhang, Z. Wu, Y. Wang, J. Zhu, Y. Hao, G. Feng, Y. Sun, T. Shi, M. Wang, High-yield and uniform NbOx-based threshold switching devices for neuron applications. IEEE Trans. Electron Dev. 69, 2391–2397 (2022)

    ADS  Google Scholar 

  47. D. Chen, A. Chen, Z. Yu, Z. Zhang, Q. Tan, J. Zeng, J. Ji, X. Pan, G. Ma, H. Wan, Forming-free, ultra-high on-state current, and self-compliance selector based on titanium-doped NbOx thin films. Ceram. Int. 47, 22677–22682 (2021)

    Google Scholar 

  48. J. Aziz, H. Kim, S. Rehman, J.-H. Hur, Y.-H. Song, M.F. Khan, D.-K. Kim, Effect of oxygen stoichiometry on the threshold switching of RF-sputtered NbOx (x= 2.0–2.5) films. Mater. Res. Bull. 144, 111492 (2021)

    Google Scholar 

  49. P. Periasamy, H.L. Guthrey, A.I. Abdulagatov, P.F. Ndione, J.J. Berry, D.S. Ginley, S.M. George, P.A. Parilla, R.P. O’Hayre, Metal-insulator-metal diodes: role of the insulator layer on the rectification performance. Adv. Mater. 25, 1301–1308 (2013)

    Google Scholar 

  50. J. Zhang, K.J. Norris, G. Gibson, D. Zhao, K. Samuels, M.M. Zhang, J.J. Yang, J. Park, R. Sinclair, Y. Jeon, Thermally induced crystallization in NbO2 thin films. Sci. Rep. 6, 1–7 (2016)

    Google Scholar 

  51. K. McKenna, A. Shluger, The interaction of oxygen vacancies with grain boundaries in monoclinic HfO2. Appl. Phys. Lett. 95, 222111 (2009)

    ADS  Google Scholar 

  52. J. Lee, J. Kim, T. Kim, H. Sohn, Negative differential resistance characteristics in forming-free NbOx with crystalline NbO2 phase. Phys. Status Solidi-R. 15, 2000610 (2021)

    Google Scholar 

  53. H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang, V. Annapureddy, J.W. Kim, J.J. Choi, B.D. Hahn, S. Priya, Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30, 1705148 (2018)

    Google Scholar 

  54. E. Cha, J. Park, J. Woo, D. Lee, A. Prakash, H. Hwang, Comprehensive scaling study of NbO2 insulator-metal-transition selector for cross point array application. Appl. Phys. Lett. 108, 153502 (2016)

    ADS  Google Scholar 

  55. J. Lee, J. Kim, J. Jeong, H. Sohn, Electroforming and threshold switching characteristics of NbOx films with crystalline NbO2 phase. J. Vac. Sci. Technol. B. 39, 053206 (2021)

    Google Scholar 

  56. H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, Z. Huo, L. Li, M. Liu, Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology. Adv. Funct. Mater. 24, 5679–5686 (2014)

    Google Scholar 

  57. J. Park, E. Cha, D. Lee, S. Lee, J. Song, J. Park, H. Hwang, Improved threshold switching characteristics of multi-layer NbOx for 3-D selector application. Microelectron. Eng. 147, 318–320 (2015)

    Google Scholar 

  58. S.K. Nandi, X. Liu, D.K. Venkatachalam, R.G. Elliman, Threshold current reduction for the metal-insulator transition in NbO2−x-selector devices: the effect of ReRAM integration. J. Phys. D: Appl. Phys. 48, 195105 (2015)

    ADS  Google Scholar 

  59. X. Liu, S.K. Nandi, D.K. Venkatachalam, K. Belay, S. Song, R.G. Elliman, Reduced threshold current in NbO2 selector by engineering device structure. IEEE Electr. Device Lett. 35, 1055–1057 (2014)

    ADS  Google Scholar 

  60. M. Kang, J. Son, Off-state current reduction in NbO2-based selector device by using TiO2 tunneling barrier as an oxygen scavenger. Appl. Phys. Lett. 109, 202101 (2016)

    ADS  Google Scholar 

  61. Z. Wang, S. Kumar, H.-S.P. Wong, Y. Nishi, Effect of thermal insulation on the electrical characteristics of NbOx threshold switches. Appl. Phys. Lett. 112, 073102 (2018)

    ADS  Google Scholar 

  62. A. Kalantarian, G. Bersuker, D. Gilmer, D. Veksler, B. Butcher, A. Padovani, O. Pirrotta, L. Larcher, R. Geer, Y. Nishi, Controlling uniformity of RRAM characteristics through the forming process. IEEE IRPS. (2012). https://doi.org/10.1109/IRPS.2012.6241874

    Article  Google Scholar 

  63. C. Liu, G. Ma, J. Zeng, Q. Tan, Z. Zhang, A. Chen, N. Liu, H. Wan, B. Wang, L. Tao, Research on improving the working current of NbOx-based selector by inserting Ti layer. Front. Mater. 8, 716065 (2021)

    Google Scholar 

  64. A. Chen, Y. Fu, G. Ma, G. Yang, N. Liu, X. Zhao, Z. Zhang, L. Tao, H. Wan, Y. Rao, The co-improvement of selectivity and uniformity on NbOx-based selector by Al-doping. IEEE Electr. Device Lett. 43, 870–873 (2022)

    ADS  Google Scholar 

  65. G. Ma, Z. Yang, A. Chen, X. Wan, N. Liu, X. Zhao, Z. Yu, H. Wang, Improved selectivity and reliability in NbOx-based selector by co-approaches of Al doping and Ta interlayer. IEEE Electr. Device Lett. 43, 1444–1446 (2022)

    ADS  Google Scholar 

  66. Y. Chen, Z. Wang, S. Chen, H. Ren, B. Li, W. Yan, G. Zhang, J. Jiang, C. Zou, Electric-field control of Li-doping induced phase transition in VO2 film with crystal facet-dependence. Nano Energy 51, 300–307 (2018)

    Google Scholar 

  67. M. Trapatseli, A. Khiat, S. Cortese, A. Serb, D. Carta, T. Prodromakis, Engineering the switching dynamics of TiOx-based RRAM with Al doping. J. Appl. Phys. 120, 025108 (2016)

    ADS  Google Scholar 

  68. Z. Wang, J. Kang, Y. Fang, Z. Yu, X. Yang, Y. Cai, Y. Wang, R. Huang, Localized metal doping effect on switching behaviors of TaOx-based RRAM device (IEEE NVMTS, 2016), pp.1–3

    Google Scholar 

  69. K. Mulchandani, A. Soni, K. Pathy, K. Mavani, Structural transformation and tuning of electronic transitions by W-doping in VO2 thin films. Superlattices Microstruct. 154, 106883 (2021)

    Google Scholar 

  70. C. Nico, M. Soares, L. Costa, T. Monteiro, M. Graça, Effects of Zr and Ga doping on the stoichiometry and properties of niobium oxides. Ceram. Int. 42, 1688–1697 (2016)

    Google Scholar 

  71. Y. Liu, H. Zhang, X. Cheng, Sequential insulating-metal-insulating phase transition of NbO2 by doping photoexcited carrier. Comp. Mater. Sci. 173, 109434 (2020)

    Google Scholar 

  72. C.N.R. Rao, G.R. Rao, G.S. Rao, Semiconductor-metal transitions in NbO2 and Nb1−xVxO2. J. Solid State Chem. 6, 340–343 (1973)

    ADS  Google Scholar 

  73. K. Sakata, Study of the phase transition in NbxTi1−xO2. J. Phys. Soc. Jpn. 26, 1067–1067 (1969)

    ADS  Google Scholar 

  74. K. Sakata, I. Nishida, M. Matsushima, T. Sakata, Electrical and magnetic properties of NbxTi1−xO2. J. Phys. Soc. Jpn. 27, 506–506 (1969)

    ADS  Google Scholar 

  75. L. Ben-dor, Y. Shimony, Crystal growth and phase transitions in the NbxCr1-xO2 (x⩾ 0.5) system. J. Cryst. Growth 43, 1–4 (1978)

    ADS  Google Scholar 

  76. W. Rüdorff, J. Märklin, Untersuchungen an ternären Oxiden der Übergangsmetalle. III. Die Rutilphase (V1−xNbx)O2. Z. Anorg. Allg. Chem. 334, 142–149 (1964)

  77. K. Wilhelmi, O. Jonsson, Note on the crystal structure of ferromagnetic chromium dioxide. Acta Chem. Scand. 12, 1532–1533 (1958)

    Google Scholar 

  78. O. Diwald, T.L. Thompson, E.G. Goralski, S.D. Walck, J.T. Yates, The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. J. Phys. Chem. B. 108, 52–57 (2004)

    Google Scholar 

  79. D.S. Jeon, T.D. Dongale, T.G. Kim, Low power Ti-doped NbO2-based selector device with high selectivity and low OFF current. J. Alloys Compd. 884, 161041 (2021)

    Google Scholar 

  80. M. Herzig, M. Weiher, A. Ascoli, R. Tetzlaff, T. Mikolajick, S. Slesazeck, Improvement of NbOx-based threshold switching devices by implementing multilayer stacks. Semicond. Sci. Technol. 34, 075005 (2019)

    ADS  Google Scholar 

  81. Z. Zhang, A. Chen, G. Ma, Y. He, C.-Y. Lin, C.-C. Lin, H. Wang, T.-C. Chang, Controllable functional layer and temperature-dependent characteristic in niobium oxide insulator-metal transition selector. IEEE T. Electron Dev. 67, 2771–2777 (2020)

    ADS  Google Scholar 

  82. B.-O. Marinder, E. Dorm, M. Seleborg, Studies on rutiletype phases in mixed transition metal dioxides II. Acta Chem. Scand. 16, 293–296 (1962)

    Google Scholar 

  83. J. Aziz, H. Kim, S. Rehman, M.F. Khan, D.-K. Kim, Chemical nature of electrode and the switching response of rf-sputtered NbOx films. Nanomaterials 10, 2164 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61825404, 61888102, and 62104044, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB44000000 and the project of MOE innovation platform.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. QL and ML: Conceptualization, investigation, and supervision. XMZ and PC: Writing original draft and image processing.

Corresponding author

Correspondence to Ming Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Zhang, X., Liu, Q. et al. NbO2-based locally active memristors: from physical mechanisms to performance optimization. Appl. Phys. A 128, 1113 (2022). https://doi.org/10.1007/s00339-022-06258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06258-6

Keywords

Navigation