Skip to main content
Log in

Blue shift in optical emission spectra of ZnGa2O4 by lattice deformation due to Eu atom amount in spinel lattice

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigated the structural and electronic energy configurations of the spinel oxide ZnGa2O4 lattice according to the crystal-phase fractions originating from substituted Eu atoms. Rietveld refinements were employed to determine the crystal structure of Eu-doped ZnGa2O4. Rietveld refinements were based on assumption of simultaneously formed three crystal phases in the normal spinel ZnGa2O4. Pure ZnGa2O4, ZnGa2O4 with Eu atoms in tetrahedral sites, and ZnGa2O4 with Eu atoms in octahedral sites were the proposed phases randomly distributed through all spinel structure. Eu atom positions in the spinel lattice were readjusted the "a" parameters from 8.3363 ± 0001 Å (for pure ZnGa2O4) to 8.3227 ± 0001 Å (for Eu atoms in tetrahedral sides) and 8.3393 ± 0001 Å (for Eu atoms in octahedral sites). Furthermore, the consequences of replacement of Eu+3 ions in octahedral side and Eu+2 ions in tetrahedral side were monitored by lowering optical emission intensity and blue shift at optical emission spectra. The blue shift was indicated by an increase in the band gap values from 4.69 ± 0.01 eV to 4.92 ± 0.01 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N.A. Masmali, Z. Osman, A.K. Arof, Ceram. Int. 47(3), 2949–2962 (2021)

    Google Scholar 

  2. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10, 5469–5502 (2010)

    ADS  Google Scholar 

  3. H. Chen, L. Sun, G.-D. Li, X. Zou, Chem. Mater. 30(6), 2018–2027 (2018)

    Google Scholar 

  4. E. Chikoidze, C. Sartel, I. Madaci, H. Mohamed, C. Vilar, B. Ballesteros, F. Belarre, E. Corro, P. Vales-Castro, G. Sauthier, L. Li, M. Jennings, V. Sallet, Y. Dumont, A. Pérez-Tomás, Cryst. Growth Des. 20(4), 2535–2546 (2020)

    Google Scholar 

  5. Y. Bessekhouad, M. Trari, Int. J. Hydrogen Energy 27(4), 357–362 (2002)

    Google Scholar 

  6. M. Krishnan, B. Tiwari, S. Seema, N. Kalra, P. Biswas, K. Rajeswari, M.B. Suresh, R. Johnson, N.M. Gokhale, S.R. Iyer, S. Londhe, V. Arora, R.P. Tripathi, J Mater Sci: Mater Med 25, 2591–2599 (2014)

    Google Scholar 

  7. Z. Huang, W. Zhou, C. Ouyang, Sci. Rep 5, 10899 (2015)

    ADS  Google Scholar 

  8. C.G. Anchieta, D. Sallet, E.L. Foletto, S.S. da Silva, O. Chiavone-Filho, A.O.C. do Nascimento, Ceram. Int. 40(3), 4173–4178 (2014)

    Google Scholar 

  9. P.G. Neudeck, R.S. Okojie, L.-Y. Chen, Proc. IEEE 90(6), 1065–1076 (2002)

    Google Scholar 

  10. S. Shawuti, M.M. Can, M.A. Gülgün, T. Fırat, Electrochim. Acta 14(5), 132–138 (2014)

    Google Scholar 

  11. A. Luchechko, O. Kravets, J. Lumin. 192, 11–16 (2017)

    Google Scholar 

  12. T.A. Safeera, N. Johns, K.M. Krishna, P.V. Sreenivasan, R. Reshmi, E.I. Anila, Mater. Chem. Phys. 181, 21–25 (2016)

    Google Scholar 

  13. M.M. Can, G.H. Jaffari, S. Aksoy, S.I. Shah, T. Fırat, J. Alloy. Compd. 549, 303–307 (2013)

    Google Scholar 

  14. R.J. Wiglusz, A. Watras, M. Malecka, P.J. Deren, R. Pazik, Nanoparticles 6, 1090–1101 (2014)

    Google Scholar 

  15. M. Pellerin, V. Castaing, D. Gourier, C. Chanéac, B. Viana, Proc. Oxide-based Mater. Devices IX 10533, 1053321 (2018)

    Google Scholar 

  16. S. Anirban, A. Dutta, Solid State Ionics 309, 137–145 (2017)

    Google Scholar 

  17. M.A. Ahmed, N. Okasha, R.M. Kershi, J. Magn. Magn. Mater. 320(8), 1146–1150 (2008)

    ADS  Google Scholar 

  18. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, T. Okuda, J. Eur. Ceram. Soc. 19(6–7), 1043–1046 (1999)

    Google Scholar 

  19. K. Sakoda, M. Hirano, Ceram. Int. 40(10), 15841–15848 (2014)

    Google Scholar 

  20. J.S. Kim, H.L. Park, G.C. Kim, T.W. Kim, Y.H. Hwang, H.K. Kim, S.I. Mho, S.D. Han, Solid State Commun. 126(9), 515–518 (2003)

    ADS  Google Scholar 

  21. M. Vasile, P. Vlazan, P. Sfirloaga, I. Grozescu, N.M. Avram, E. Rusu, Physica Scripta. Phys. Scr. 2009, 014046 (2009)

    Google Scholar 

  22. N.K. Mishra, R. Kripal, K. Kumar, Opt. Mater. 128, 112443 (2022)

    Google Scholar 

  23. M.K. Lee, S. Kang, J. Ceram. Soc. Jpn. 126(5), 382–388 (2018)

    Google Scholar 

  24. C. Lu, Q. Zhang, S. Li, Z. Yan, Z. Liu, P. Li, W. Tang, J. Phys. D: Appl. Phys. 54, 405107 (2021)

    ADS  Google Scholar 

  25. H.J. Jang, J.H. Yang, J.Y. Maeng, M.H. Joo, Y.J. Kim, S.M. Hong, C.K. Rhee, Y. Sohn, J. CO2 Util. 60, 101994 (2022)

    Google Scholar 

  26. C. Mevel, J. Carreaud, G. Delaizir, J.-R. Duclere, F. Brisset, J. Bourret, P. Carles, C. Genevois, M. Allix, S. Chenu, J. Eur. Ceram. Soc. 41, 4934–4941 (2021)

    Google Scholar 

  27. P.M. Aneesh, M.K. Krishna, M.K. Jayaraj, J. Electrochem. Soc. 156(3), e33 (2009)

    Google Scholar 

  28. D. Hebbar, K.S. Choudharia, N. Pathak, S.A. Shivashankar, S.D. Kulkarni, Mater. Res. Bull 119, 110544 (2019)

    Google Scholar 

  29. N.D. Hebbar, K.S. Choudhari, N. Pathak, S.A. Shivashankar, S.D. Kulkarni, Mater. Res. Bull. 119, 110544 (2019)

    Google Scholar 

  30. H.-J. Huang, Y.-H. Wang, L. Li, H. Li, Z.-F. Hu, H. Zhao, Sci. Adv. Mater. 8(8), 1579–1584 (2016)

    Google Scholar 

  31. E.-B. Kim, M. Imran, M.S. Akhtar, H.-S. Shin, S. Ameen, J. Hazard. Mater. 404, 124069 (2021)

    Google Scholar 

  32. H. Li, Y. Wang, L. Li, H. Huang, H. Zhao, Z. Hu, Mod. Phys. Lett. B 30(27), 1650305 (2016)

    ADS  Google Scholar 

  33. H.-J. Byun, J.-U. Kim, H. Yang, Nanotechnology 20, 495602 (2009)

    ADS  Google Scholar 

  34. Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, X. Huang, J. Lumin. 111(3), 139–145 (2005)

    Google Scholar 

  35. C. Yu, D. Yan, S. Lou, C. Xia, M. Cao, T. Xuan, J. Wang, H. Li, J. Lumin. 199, 492–498 (2018)

    Google Scholar 

  36. H. Akazawa, H. Shinojima, J. Appl. Phys. 124, 095301 (2018)

    ADS  Google Scholar 

  37. J. Rodríguez-Carvajal, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, p. 127, Toulouse, France (1990).

  38. Z. Yang, J. Liao, S. Lai, H. Wu, Z. Fan, J. Qiu, Z. Song, Y. Yang, D. Zhou, Mater. Express 3(4), 350–354 (2013)

    Google Scholar 

  39. Q. Huo, W. Tu, L. Guo, Opt. Mater. 72, 305–312 (2017)

    ADS  Google Scholar 

  40. B.L. Musico, J.P. Smith, Q. Wright, K. Sickafus, D.G. Mandrus, V. Keppens, MRS Commun. (2022)

  41. S. Seo, H. Yang, P.H. Holloway, J. Lumin. 129, 307–311 (2009)

    Google Scholar 

  42. K. Somasundaram, K.G. Girija, P.C. Selvin, V. Sudarsan, R.M. Kadam, R.K. Vatsa, J. Lumin. 185, 145–150 (2017)

    Google Scholar 

  43. M. Vasile, P. Vlazan, N.M. Avram, J. Alloy. Compd. 500, 185–189 (2010)

    Google Scholar 

  44. J.S. Kim, A.K. Kwon, J.S. Kim, H.L. Park, G.C. Kim, S. Han, J. Lumin. 122–123, 851–854 (2007)

    Google Scholar 

  45. E. Rusu, V. Ursaki, G. Novitschi, M. Vasile, P. Petrenco, L. Kulyuk, Phys. Status Solidi C 6(5), 1199–1202 (2009)

    ADS  Google Scholar 

  46. C. Yu, M. Cao, D. Yan, S. Lou, C. Xia, T. Xuan, R.-J. Xie, H. Li, J. Colloid Interface Sci. 530, 52–57 (2018)

    ADS  Google Scholar 

  47. X. Duan, F. Yu, Y. Wu, Appl. Surf. Sci. 261, 830–834 (2012)

    ADS  Google Scholar 

  48. Y. Zhou, C. Li, Y. Wang, Adv. Optical Mater. 10, 2102246 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University with project number FOA-2017-24888.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have given their approval for submission.

Corresponding author

Correspondence to Musa Mutlu Can.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

The manuscript has not been published elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, M.M., Akbaba, Y., Shawuti, S. et al. Blue shift in optical emission spectra of ZnGa2O4 by lattice deformation due to Eu atom amount in spinel lattice. Appl. Phys. A 128, 1041 (2022). https://doi.org/10.1007/s00339-022-06203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06203-7

Keywords

Navigation