Skip to main content
Log in

The enhancement of sensitivity and depth of field penetration in the coupled SPR-Waveguide-based sensors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have evaluated the characteristics of the guided modes of a coupled SPR-Waveguide (SPR-WG) configuration consisting of Prism-gold-Dielectric 1-Dielectric 2-analyte and then have compared it with the conventional SPR structures. The penetration depth, the magnetic field distribution profile, the amplitude and phase spectra in this sensor strongly depend on the thickness of the dielectric layers used and the refractive index of the sensing medium (ns). The value of the field penetration depth in the proposed sensor can be increased by changing ns. The results indicated that the penetration depth values for the refractive indices of 1.333 and 1.533 are 8 µm and 80 µm, respectively. In addition, it was found that the SPR-WG sensor provides the highest sensitivity (equivalent to 200 RIU−1) among all sensors at ns = 1.533. The results also showed that the proposed sensor has a high phase sensitivity compared to the conventional SPR sensor. Overall, by adjusting the geometry parameters and ns, these sensors can be used as a useful tool for extracting optical information from biological samples, including prokaryotic and eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request, and availability of materials is “not applicable”.

References

  1. R. Kumar, A.S. Kushwaha, M. Srivastava, H. Mishra, S. Srivastava, Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor. Appl. Phys. A 124, 1–10 (2018)

    Article  Google Scholar 

  2. Y. Jia, Y. Liao, H. Cai, Sensitivity Improvement of Surface Plasmon Resonance Biosensors with GeS-Metal Layers. Electronics 11, 332 (2022)

    Article  Google Scholar 

  3. M. Zekriti, Theoretical comparison between graphene-on-silver and gold-on-silver based surface plasmon resonance sensor. Mater. Today Proc. 45, 7571–7575 (2021)

    Article  Google Scholar 

  4. Y. Jia, Z. Li, H. Wang, M. Saeed, H. Cai, Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide. Sensors 20, 131 (2020)

    Article  ADS  Google Scholar 

  5. S.S. Hinman, K.S. McKeating, Q. Cheng, Surface plasmon resonance: material and interface design for universal accessibility. Anal. Chem. 90, 19 (2018)

    Article  Google Scholar 

  6. A.D.S. Almeida, D. Bahamon, N.M. Peres, C.J. de Matos, A critical analysis on the sensitivity enhancement of surface plasmon resonance sensors with graphene. Nanomaterials 12(15), 2562 (2022)

    Article  Google Scholar 

  7. B. Hossain, A.K. Paul, M.A. Islam, M.F. Hossain, M.M. Rahman, Design and analysis of highly sensitive prism based surface plasmon resonance optical salinity sensor. Results Opt. 7, 100217 (2022)

    Article  Google Scholar 

  8. C. Rizal, S. Pisana, I. Hrvoic, Improved Magneto-Optic Surface Plasmon Resonance Biosensors. Photonics 5(3), 15 (2018).

    Article  Google Scholar 

  9. P. Arora, E. Talker, N. Mazurski, U. Levy, Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing. Sci. Rep. 8, 1–9 (2018)

    Article  ADS  Google Scholar 

  10. S. Jafari, J.M. Amjad, R. Mohammadkhani, P. Jahanshahi, Characterization of graphene-gold spr biosensor based on statistical analysis of reflection spectrum. Mater. Res. Express 5, 125021 (2018)

    Article  ADS  Google Scholar 

  11. G.S. Mei, P.S. Menon, G. Hegde, ZnO for performance enhancement of surface plasmon resonance biosensor: a review. Mater. Res. Express 7, 012003 (2020)

    Article  ADS  Google Scholar 

  12. D. Wang et al., Recent advances in surface plasmon resonance imaging sensors. Sensors 19, 1266 (2019)

    Article  ADS  Google Scholar 

  13. S. Chen, C. Lin, Sensitivity comparison of graphene based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Mater. Res. Express 6, 056503 (2019)

    Article  ADS  Google Scholar 

  14. A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 5, 571–606 (2011)

    Article  ADS  Google Scholar 

  15. L. Wu, K. Che, Y. Xiang, Y. Qin, Enhancement of sensitivity with high-reflective-index guided-wave nanomaterials for a long-range surface plasmon resonance sensor. Nanomaterials 12, 168 (2022)

    Article  Google Scholar 

  16. L. Cui, J. Wang, M. Sun, Graphene plasmon for optoelectronics. Reviews in Physics 6, 100054 (2021)

    Article  Google Scholar 

  17. H. Ditlbacher et al., Coupling dielectric waveguide modes to surface plasmon polaritons. Opt. Express 16, 10455–10464 (2008)

    Article  ADS  Google Scholar 

  18. L. Ji et al., Polymer waveguide coupled surface plasmon refractive index sensor: a theoretical study. Photon. Sens. 10, 353–363 (2020)

    Article  ADS  Google Scholar 

  19. G. Zheng, J. Cong, L. Xu, J. Wang, High-resolution surface plasmon resonance sensor with Fano resonance in waveguide-coupled multilayer structures. Appl. Phys. Express 10, 042202 (2017)

    Article  ADS  Google Scholar 

  20. S. Mahajna, M. Neumann, O. Eyal, A. Shalabney, Plasmon-waveguide resonances with enhanced figure of merit and their potential for anisotropic biosensing in the near infrared region. J. Sens. 2016, 1–6 (2016)

    Article  Google Scholar 

  21. S. Chen, C. Lin, High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization. Optik 127, 7514–7519 (2016)

    Article  ADS  Google Scholar 

  22. H.-S. Lee et al., Enhanced resolution of a surface plasmon resonance sensor detecting C-reactive protein via a bimetallic waveguide-coupled mode approach. Sens. Actuators B Chem. 266, 311–317 (2018)

    Article  Google Scholar 

  23. Y. Liu et al., Long-range surface plasmon resonance configuration for enhancing SERS with an adjustable refractive index sample buffer to maintain the symmetry condition. ACS Omega 5, 32951–32958 (2020)

    Article  Google Scholar 

  24. Y.-X. Jiang, B.-H. Liu, X.-S. Zhu, X.-L. Tang, Y.-W. Shi, Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit. Opt. Lett. 40, 744–747 (2015)

    Article  ADS  Google Scholar 

  25. L. Yang et al., Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory. Sci. Rep. 8, 1–10 (2018)

    ADS  Google Scholar 

  26. V. Sharma, D. Madaan, A. Kapoor, Narrow resonance and ultrahigh sensitivity plasmonic waveguide refractive index sensor. Meas. Sci. Technol. 31, 075204 (2020)

    Article  ADS  Google Scholar 

  27. P. Zhang, L. Liu, Y. He, Y. Ji, H. Ma, Self-referenced plasmon waveguide resonance sensor using different waveguide modes. J. Sens. 2015, 1–10 (2015)

    Google Scholar 

  28. A. Abbas, M.J. Linman, Q. Cheng, Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors. Sens. Actuators B Chem. 156, 169–175 (2011)

    Article  Google Scholar 

  29. P. Zhang et al., A waveguide-coupled surface plasmon resonance sensor using an Au–MgF2–Au structure. Plasmonics 14, 187–195 (2019)

    Article  Google Scholar 

  30. V.K. Sharma, Waveguide controlled long range surface plasmon-polariton refractive index sensor. Eng. Res. Express 2, 035024 (2020)

    Article  ADS  Google Scholar 

  31. H. Yang et al., systematic evolution of resonant coupling behavior between surface plasmon polaritons and multi-waveguide modes in metal-dielectric multi-layers. Plasmonics 15, 1967–1975 (2020)

    Article  Google Scholar 

  32. N. Bouzari, J.M. Amjad, R. Mohammadkhani, P. Jahanshahi, Abrupt phase change in graphene-gold spr-based biosensor. Mater. Res. Express 7, 015091 (2020)

    Article  ADS  Google Scholar 

  33. N. Bouzari, J.M. Amjad, R. Mohammadkhani, P. Jahanshahi, Introducing S-RILS and D-RILS as refractive index limited optical biosensors in multiple nanolayers. Mater. Rese. Express 7, 086201 (2020)

    Article  ADS  Google Scholar 

  34. N. Skivesen, R. Horvath, H. Pedersen, Optimization of metal-clad waveguide sensors. Sens. Actuators B Chem. 106, 668–676 (2005)

    Article  Google Scholar 

  35. V. Sharma, A. Kumar, A. Kapoor, Analysis of surface and guided wave plasmon polariton modes in insulator–metal–insulator planar plasmonic waveguides. Optics Commun. 285, 1123–1127 (2012)

    Article  ADS  Google Scholar 

  36. Glytsis, E. N. Introduction to Slab Dielectric Waveguides. (2016).

  37. A.K. Sheridan, R.D. Harris, P.N. Bartlett, J.S. Wilkinson, Phase interrogation of an integrated optical SPR sensor. Sens. Actuators B Chem. 97, 114–121 (2004)

    Article  Google Scholar 

  38. R.-C. Twu, C.-W. Hsueh, Phase interrogation birefringent-refraction sensor for refractive index variation measurements. Sens. Actuators, A 253, 85–90 (2017)

    Article  Google Scholar 

  39. P. Hlubina, D. Ciprian, Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment. Plasmonics 12, 1071–1078 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Mohammadkhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzari Saravani, N., Mohammadkhani, R. The enhancement of sensitivity and depth of field penetration in the coupled SPR-Waveguide-based sensors. Appl. Phys. A 128, 1035 (2022). https://doi.org/10.1007/s00339-022-06193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06193-6

Keywords

Navigation