Skip to main content
Log in

Nanoarchitectonics with MWCNT and Ecoflex film for flexible strain sensors: wide linear range for wearable applications and monitoring of pressure distribution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, highly flexible strain sensors have been widely studied based on the conductive polymer composites, due to their potential applications in wearable electronics, soft robots, and human–machine interfaces. Herein, we fabricate the flexible MWCNT line/Ecoflex strain sensors by 3D printing technology to investigate the effects of preparation conditions on the performance of sensors, and find that gage factor (GF) of such sensors is effected by concentration of MWCNT/IPA solution and curing time of Ecoflex pre-polymer film. Among the obtained samples, the sensor prepared by 2 wt% MWCNT/IPA solution with curing time of 12 min has the highest gage factor, about ~ 23.87. The sensors can detect or monitor subtle motions of facial muscle, breath and pulse, and possess wide linear range besides good repeatability and excellent durability. Meanwhile, the prepared sensors were designed into a 4 × 4 array, and the array achieved monitoring of spatial distribution of the applied pressure. Our strategy could be used to fabricate flexible strain sensors with wide linear range, which facilitate further integration to achieve potential applications in detection of human activity, electronic skin, and soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. G. Schwartz, B.C.K. Tee, J.G. Mei, Nat. Commun. 4, 1859 (2013). https://doi.org/10.1038/ncomms2832

    Article  ADS  Google Scholar 

  2. Z.K. Liu, Y. Zheng, L. Jin, Adv. Funct. Mater. 31(14), 2007622 (2021). https://doi.org/10.1002/adfm.202007622

    Article  Google Scholar 

  3. S.R. Pan, Z. Pei, Z.A. Jing, RSC Adv. 10(19), 11225–11232 (2020). https://doi.org/10.1039/D0RA00327A

    Article  ADS  Google Scholar 

  4. J. Wang, W.Q. Zhang, Q. Yin, J. Mater. Sci.: Mater. Electron. 31(1), 125–133 (2020). https://doi.org/10.1007/s10854-019-01698-y

    Article  Google Scholar 

  5. H.J. Li, H. Zhang, Y.J. Tian, A.C.S. Appl, Mater. Interfaces 13, 12814–12823 (2021). https://doi.org/10.1080/00032719.2015.1072825

    Article  Google Scholar 

  6. X.Y. Zhang, J.S. Chen, J.M. He, J. Colloid Interface Sci. 585, 420–432 (2021). https://doi.org/10.1080/00032719.2015.1072825

    Article  ADS  Google Scholar 

  7. H.B. Wang, H.D. Zhang, L.L. Xu, J. Solid State Electrchem. 18, 2435–2442 (2014). https://doi.org/10.1007/s10008-014-2494-z

    Article  ADS  Google Scholar 

  8. H.B. Wang, H.D. Zhang, Y.L. Jiang, Anal. Lett. 49, 226–235 (2016). https://doi.org/10.1080/00032719.2015.1072825

    Article  Google Scholar 

  9. J.C. Zhou, X.H. Guo, Z.S. Xu, Compos. Sci. Technol. 197, 108215 (2020). https://doi.org/10.1016/j.compscitech.2020.108215

    Article  Google Scholar 

  10. B. Yan, H.Z. Ding, Y.W. Zhang, J. Mater. Sci.: Mater. Electron. 32(22), 26439–26448 (2021). https://doi.org/10.1007/s10854-021-07022-x

    Article  Google Scholar 

  11. J.J. Park, W.J. Hyun, S.C. Mun, A.C.S. Appl, Mater. Interfaces 7(11), 6317 (2015). https://doi.org/10.1021/acsami.5b00695

    Article  Google Scholar 

  12. M. Nie, X.Y. Ren, L. Wen, Sens. Actuators A. 318, 112515 (2020). https://doi.org/10.1016/j.sna.2020.112515

    Article  Google Scholar 

  13. E. Davoodi, H. Fayazfar, F. Liravi, Addit. Manuf. 32, 101016 (2020). https://doi.org/10.1016/j.addma.2019.101016

    Article  Google Scholar 

  14. D. Xiang, X.Z. Zhang, Z.H. Han, J. Mater. Sci. 55(33), 15769–15786 (2020). https://doi.org/10.1007/s10853-020-05137-w

    Article  ADS  Google Scholar 

  15. C. Zhao, Z.D. Xia, X.L. Wang, Mater. Des. 193, 108788 (2020). https://doi.org/10.1016/j.matdes.2020.108788

    Article  Google Scholar 

  16. D. Xiang, X.Z. Zhang, E. Harkin-Jones, Compos. Part A Appl. Sci. Manuf. 129, 105730 (2020). https://doi.org/10.1016/j.compositesa.2019.105730

    Article  Google Scholar 

  17. M.O.F. Emon, F. Alkadi, D.G. Philip, Addit. Manuf. 28, 629–638 (2019). https://doi.org/10.1016/j.addma.2019.06.001

    Article  Google Scholar 

  18. P. Huang, Z.D. Xia, S. Cui, Mater. Des. 142, 11–21 (2018). https://doi.org/10.1016/j.matdes.2017.12.051

    Article  Google Scholar 

  19. J.H. Zhu, M.C. Zhu, N.X. Han, Materials 7(8), 5438–5453 (2014). https://doi.org/10.3390/ma7085438

    Article  ADS  Google Scholar 

  20. G. Hassan, J. Bae, A. Hassan, Compos. Part A Appl. Sci. Manuf. 107, 519–528 (2018). https://doi.org/10.1016/j.compositesa.2018.01.031

    Article  Google Scholar 

  21. S. Aslam, H. Bokhari, T. Anwar, Mater. Lett. 235, 66–70 (2018). https://doi.org/10.1016/j.matlet.2018.09.164

    Article  Google Scholar 

  22. M. Amjadi, A. Pichitpajongkit, S. Lee, ACS Nano 8, 5154–5163 (2014). https://doi.org/10.1021/nn501204t

    Article  Google Scholar 

  23. C.J. Lee, K.H. Park, C.J. Han, Sci. Rep. 7(1), 7959 (2017). https://doi.org/10.1038/s41598-017-08484-y

    Article  ADS  Google Scholar 

  24. L. Bokobza, J. Zhang, Express Polym. Lett. 6(7), 601–608 (2012). https://doi.org/10.3144/expresspolymlett.2012.63

    Article  Google Scholar 

  25. M.S. Dresselhaus, A. Jorio, M. Hofmann, Nano Lett. 10(3), 751–758 (2010). https://doi.org/10.1021/nl904286r

    Article  ADS  Google Scholar 

  26. H. Park, D.S. Kim, S.Y. Hong, Nanoscale 9, 7631–7640 (2017). https://doi.org/10.1039/C7NR02147J

    Article  Google Scholar 

  27. F. Jabbar, A.M. Soomro, J.W. Lee, Sensor Mater. 32, 4077–4093 (2020). https://doi.org/10.18494/SAM.2020.3085

    Article  Google Scholar 

  28. D. Ahmad, S.K. Sahu, K. Patra, Polym. Test. 79, 106038 (2019). https://doi.org/10.1016/j.polymertesting.2019.106038

    Article  Google Scholar 

  29. S.M. Wang, X.X. Zhang, X.D. Wu, Soft Matter 12, 845–852 (2016). https://doi.org/10.1039/C5SM01958C

    Article  ADS  Google Scholar 

  30. Y.R. Jeong, H. Park, S.W. Jin, Adv. Funct. Mater. 25, 4228–4236 (2015). https://doi.org/10.1002/adfm.201501000

    Article  Google Scholar 

  31. A.M. Soomro, M.A.U. Khalid, I. Shah, Smart Mater. Struct. 29(2), 025011 (2020). https://doi.org/10.1088/1361-665X/ab540b

    Article  ADS  Google Scholar 

  32. T. Yamada, Y. Hayamizu, Y. Yamamoto, Nat. Nanotechnol. 6, 296–301 (2011). https://doi.org/10.1038/nnano.2011.36

    Article  ADS  Google Scholar 

  33. I. Kim, K. Woo, Z. Zhong, Nanoscale 10, 7890–7897 (2018). https://doi.org/10.1039/C7NR09421C

    Article  Google Scholar 

  34. C.X. Liu, M.D. Li, B.S. Lu, Org. Electron. 88, 105977 (2021). https://doi.org/10.1016/j.orgel.2020.105977

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11774318, 51702017, 11974016 and 12004346), and Key Scientific and Technological Project of Henan Province (212102210133).

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [YZ], [HD] and [BY]. The first draft of the manuscript was written by [YZ] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yongtao Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ding, H., Yan, B. et al. Nanoarchitectonics with MWCNT and Ecoflex film for flexible strain sensors: wide linear range for wearable applications and monitoring of pressure distribution. Appl. Phys. A 128, 885 (2022). https://doi.org/10.1007/s00339-022-06018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06018-6

Keywords

Navigation