Skip to main content
Log in

Y2Mo3O12 modified carbonyl iron powder-boron-phenolic resin coatings for microwave absorption

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbonyl iron powder–polymer coating is one of the effective microwave absorption systems, which can be widely used as medium temperature structural materials in the aerospace industry. However, the significant mismatch of the coefficient of thermal expansion (CTE) between coatings and the titanium alloy substrates will cause serious cracking and peeling problems in practical applications. Thus, we designed to introduce Y2Mo3O12 (YMO) with negative CET into the carbonyl iron powder–boron-modified phenolic (BP) resin coating to reduce the CET of coating. The result showed that the CTE of the coatings is significantly decreased by the addition of Y2Mo3O12. The YMO/CIP/BP coating of 8 wt% YMO - 67 wt% CIP - 25 wt% BP shows a CTE of 21.1 × 10–6−1, which is 68% smaller than that of CIP/BP coating. The minimum RL (maximum of microwave absorption) of 8 wt% YMO - 67 wt% CIP - 25 wt% BP is – 12.3 dB at the thickness of 1.4 mm, which makes it an excellent candidate for the microwave absorptions applied on the titanium alloy surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.D.L. Chung, Materials for electromagnetic interference shielding. Mater Chem Phys 255, 123587 (2020)

    Article  ADS  Google Scholar 

  2. J. Liu, L. Zhang, H. Wu, Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: review and perspective. J Phy D 54(20), 203001 (2021)

    Article  Google Scholar 

  3. X.G. Chen, Y. Ye, J.P. Cheng, Recent progress in electromagnetic wave absorbers. J Inorg Mater 26(5), 449–457 (2011)

    Article  Google Scholar 

  4. L.B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, C.B. Tang, P.K. Tan, C.R. Deng, S. Matitsine, Recent progress in some composite materials and structures for specific electromagnetic applications. Inter Mater Rev 58(4), 203–259 (2013)

    Article  Google Scholar 

  5. K.S. Sista, S. Dwarapudi, D. Kumar, G.R. Sinha, A.P. Moon, Carbonyl iron powders as absorption material for microwave interference shielding: a review. J Alloys Compd 853, 157251 (2021)

    Article  Google Scholar 

  6. P. Yin, L. Zhang, X. Feng, J. Wang, J. Dai, Y. Tang, Recent progress in ferrite microwave absorbing composites. Integr Ferroelectr 211(1), 82–101 (2020)

    Article  ADS  Google Scholar 

  7. R. Huang, L. Wang, Y. Lin, Y. Dong, D. You, Surface modification of carbonyl iron powders with silicone polymers in supercritical fluid to get higher dispersibility and higher thermal stability. Surf Interface Anal 49(2), 79–84 (2017)

    Article  Google Scholar 

  8. Y. Qing, D. Min, Y. Zhou, F. Luo, W. Zhou, Graphene nanosheet- and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015)

    Article  Google Scholar 

  9. Y. Qing, W. Zhou, S. Jia, F. Luo, D. Zhu, Effect of heat treatment on the microwave electromagnetic properties of carbonyl iron/epoxy-silicone resin coatings. J Mater Sci Technol 26(11), 1011–1015 (2010)

    Article  Google Scholar 

  10. M.O. Abdalla, A. Ludwick, T. Mitchell, Boron-modified phenolic resins for high performance applications. Polymer 44(24), 7353–7359 (2003)

    Article  Google Scholar 

  11. A.M. Kawamoto, L.C. Pardini, M.F. Diniz, V.L. Lourenço, M.F.K. Takahashi, Synthesis of a boron modified phenolic resin. J Aerosp Technol Manag 2(2), 169–182 (2010)

    Article  Google Scholar 

  12. R.R. Boyer, An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213(1), 103–114 (1996)

    Article  Google Scholar 

  13. H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater 15(4), 191–215 (2013)

    Article  Google Scholar 

  14. S.D. Gates, C. Lind, Polymorphism in yttrium molybdate Y2Mo3O12. J Solid State Chem. 180(12), 3510–3514 (2007)

    Article  ADS  Google Scholar 

  15. C. Guzman-Afonso, C. Gonzalez-Silgo, J. Gonzalez-Platas, M. Eulalio Torres, A. Diego Lozano-Gorrin, N. Sabalisck, V. Sanchez-Fajardo, J. Campo, J. Rodriguez-Carvajal, Structural investigation of the negative thermal expansion in yttrium and rare earth molybdates. J Phys Condens Matter 23(32), 325402 (2011)

    Article  Google Scholar 

  16. X.S. Liu, B.H. Yuan, Y.G. Cheng, E.J. Liang, W.F. Zhang, Combined influences of A3+ and Mo6+ on monoclinic-orthorhombic phase transition of negative-thermal-expansion A2Mo3O12. J Alloys Compd 776, 236–241 (2019)

    Article  Google Scholar 

  17. B.A. Marinkovic, M. Ari, R.R. de Avillez, F. Rizzo, F.F. Ferreira, K.J. Miller, M.B. Johnson, M.A. White, Correlation between AO6 polyhedral distortion and negative thermal expansion in orthorhombic Y2Mo3O12 and related materials. Chem Mater 21(13), 2886–2894 (2009)

    Article  Google Scholar 

  18. B.A. Marinkovic, P.M. Jardim, R.R. Avillez, F. Rizzo, Negative thermal expansion in Y2Mo3O12. Solid State Sci. 7(11), 1377–1383 (2005)

    Article  ADS  Google Scholar 

  19. K.J. Miller, M.B. Johnson, M.A. White, B.A. Marinkovic, Low-temperature investigations of the open-framework material HfMgMo3O12. Solid State Commun 152(18), 1748–1752 (2012)

    Article  ADS  Google Scholar 

  20. C.P. Romao, S.P. Donegan, J.W. Zwanziger, M.A. White, Relationships between elastic anisotropy and thermal expansion in A2Mo3O12 materials. Phys Chem Chem Phys 18(44), 30652–30661 (2016)

    Article  Google Scholar 

  21. C.P. Romao, K.J. Miller, M.B. Johnson, J.W. Zwanziger, B.A. Marinkovic, M.A. White, Thermal, vibrational, and thermoelastic properties of Y2Mo3O12 and their relations to negative thermal expansion. Phys. Rev. B. 90(2), 024305 (2014)

    Article  ADS  Google Scholar 

  22. S. Sumithra, A.M. Umarji, Negative thermal expansion in rare earth molybdates. Solid State Sci. 8(12), 1453–1458 (2006)

    Article  ADS  Google Scholar 

  23. C. Zhou, Q. Zhang, S. Liu, B. Luo, E. Yi, E. Tian, G. Li, L. Li, G. Wu, Thermal mismatch strain induced disorder of Y2Mo3O12 and its effect on thermal expansion of Y2Mo3O12/Al composites. Phys Chem Chem Phys 19(19), 11778–11785 (2017)

    Article  Google Scholar 

  24. Y. Zhou, W. Zhou, H. Wang, F. Luo, D. Zhu, Preparation and properties of carbonyl iron particles (CIPs)/silicone resin composite with negative thermal expansion filler. J. Polym. Res. 22(138), 1–7 (2015)

    Google Scholar 

  25. C. Song, L. Zhang, W. B. Zhou. Preparation of Y2Mo3O12 podwer using citric acid. Foshan Ceramics. 11(20), 24–27 (2010)

    Google Scholar 

  26. G. Tong, W. Wu, Q. Hua, Y. Miao, J. Guan, H. Qian, Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2–18 GHz ranges. J. Alloy. Compd. 509(2), 451–456 (2011)

    Article  Google Scholar 

  27. X. Yan, G. Chai, D. Xue, The improvement of microwave properties for Co flakes after silica coating. J. Alloy. Compd. 509(4), 1310–1313 (2011)

    Article  Google Scholar 

  28. S. Jia, F. Luo, Y. Qing, W. Zhou, D. Zhu, Electroless plating preparation and microwave electromagnetic properties of Ni-coated carbonyl iron particle/epoxy coatings. Physica B-Condens Matter. 405(17), 3611–3615 (2010)

    Article  ADS  Google Scholar 

  29. Y. Li, Y.C. Qing, Y.F. Zhou, B. Zhao, Q. Zhi, B.B. Fan, R. Zhang, Unique nanoporous structure derived from Co3O4–C and Co/CoO–C composites towards the ultra-strong electromagnetic absorption. Compos. B Eng. 213, 108731–110874 (2021)

    Article  Google Scholar 

  30. H.L. Lv, Z.H. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018)

    Article  Google Scholar 

  31. H.L. Lv, H.Q. Zhang, G.B. Ji, Z.C.J. Xu, Interface strategy to achieve tunable high frequency attenuation. Acs Appl Mater Inter 8, 6529–6538 (2016)

    Article  Google Scholar 

  32. W. Tian, X.Z. Zhang, Y. Guo, C.H. Mu, P.H. Zhou, L.J. Yin, L.B. Zhang, L. Zhang, H.P. Lu, X. Jian, L.J. Deng, Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption. Carbon 173, 185–193 (2021)

    Article  Google Scholar 

  33. H.Y. Nan, Y.C. Qing, H. Gao, H.Y. Jia, F. Luo, W.C. Zhou, Synchronously oriented Fe microfiber & flake carbonyl iron/epoxy composites with improved microwave absorption and lightweight feature. Compos Sci Technol 184, 107882 (2019)

    Article  Google Scholar 

  34. F.Y. Wang, Y.Q. Sun, D.R. Li, B. Zhong, Z.G. Wu, S.Y. Zuo, D. Yan, R.F. Zhuo, J.J. Feng, P.X. Yan, Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 134, 264–273 (2018)

    Article  Google Scholar 

  35. Y.S. Huo, K. Zhao, M. Peng, F.P. Li, Z.X. Lu, Q.N. Meng, Y.F. Tang, Anchoring of SiC and Fe3Si nanocrystallines in carbon nanofibers inducing interfacial polarization to promote microwave attenuation ability. J Alloy Compd 891, 162006 (2021)

    Article  Google Scholar 

  36. P.A. Yang, Y.X. Huang, R. Li, X. Huang, H.B. Ruan, M.J. Shou, W.J. Li, Y.X. Zhang, N. Li, L.C. Dong, Optimization of Fe@Ag core-shell nanowires with improved impedance matching and microwave absorption properties. Chem Eng J 430, 132878 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The funding provided by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (No. 2020-TS-01).

Funding

State Key Laboratory of Solidification Processing,No. 2020-TS-01,Yuchang Qing

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Deng or Chunhai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Yang, Q., Zhang, Z. et al. Y2Mo3O12 modified carbonyl iron powder-boron-phenolic resin coatings for microwave absorption. Appl. Phys. A 128, 888 (2022). https://doi.org/10.1007/s00339-022-05990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05990-3

Keywords

Navigation