Skip to main content
Log in

Synthesis and characterization of selenium nanoparticles obtained by femtosecond pulsed laser ablation in liquid media

  • S.I. : COLA 2021/2022
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we report on the synthesis of selenium nanoparticles in various solvents via femtosecond pulsed laser ablation in liquids (FPLAL). A Coherent-Vitara laser oscillator producing pulses of 24 fs, 800 nm, and 1–7 nJ, at 80 MHz repetition rate was employed. The nanoparticles (NPs) were generated by FPLAL ablating a high-purity selenium target submerged in different solvents. The ablation time was varied from 1 to 45 min. The NPs were uniformly dispersed in the solution showing a red color due to surface plasmon excitation characteristic of colloidal selenium nanoparticles. The samples were characterized by TEM, UV–Vis, and Raman spectroscopy. TEM images reveal the presence of nanoparticles with sizes ranging from 5 to 200 nm and an effect of the solvent which in one case promotes the formation of amorphous selenium. The UV–Vis absorption spectra of the prepared Se-NPs show a maximum absorption peak at 242 nm attributed to the surface plasmon of Se. Raman spectroscopy shows two bands peaking at 235 and 250 cm−1, indicating, respectively, the crystalline and amorphous nature of the synthesized nanostructures. The ratio between these two peaks varies depending on the solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.J. Berzelius, Annales de Chimie et de Physique, Paris, Serie 2. Tome 2, 199 (1817)

    Google Scholar 

  2. R.A. Selenium, W.C. Zingaro, Cooper (Van Nostrand Reinhold, New York, 1974)

    Google Scholar 

  3. E. Gerlach, P. Grosse (eds.), The Physics of Selenium and Tellurium (Springer-Verlag, Berlin, 1979)

    Google Scholar 

  4. E. Haro Poniatowski, M. Fernandez Guasti, S. Camacho Lopez, Opt. Lett. 17, 252 (1992)

    Article  ADS  Google Scholar 

  5. E. Haro Poniatowski, M. Fernández Guasti, S. Camacho López, F. Ruiz, Physica A 207, 329 (1994)

    Article  ADS  Google Scholar 

  6. E. Haro Poniatowski, M. Fernández Guasti, S. Camacho López, A. Gil Villegas, J. González Hernández, Optics Comm. 119, 154 (1995)

    Article  ADS  Google Scholar 

  7. M. Stolzoff, T.J. Webster, J. Biomed. Mater. Res. Part A 104(2), 476–482 (2016)

    Article  Google Scholar 

  8. A. Khalid, P.A. Tran, R. Norello, D.A. Simpson, A.J. O’Connor, S. Tomljenovic-Hanic, Nanoscale 8(6), 3376–3385 (2016)

    Article  ADS  Google Scholar 

  9. R. Nielsen, T.H. Youngman, A. Crovetto, O. Hansen, I. Chorkendorff, P.C.K. Vesborg, A.C.S. Appl, Energy Mater. 4(10), 10697–10702 (2021)

    Google Scholar 

  10. S. Chaudhary, S.K. Mehta, J. Nanosci. Nanotechnol. 14(2), 1658–1674 (2014)

    Article  Google Scholar 

  11. W.-Y. Tzeng, Y.-H. Tseng, T.-T. Yeh, Tu. Chien-Ming, R. Sankar, Y.-H. Chen, B.-H. Huang, F.-C. Chou, C.-W. Luo, Opt. Express 28, 685 (2020)

    Article  ADS  Google Scholar 

  12. Y. Cai, Y. Zhang, S. Ji, Y. Ye, Wu. Shouliang, J. Liu, S. Chen, C. Liang, J. Colloid Interface Sci. 566, 284–295 (2020)

    Article  ADS  Google Scholar 

  13. M. Fernández Guasti, L. Ponce, E. Haro Poniatowski, E. Jímenez, R. Diamant, J. Mater. Sci. 30, 6253 (1995)

    Article  ADS  Google Scholar 

  14. M. Quintana, E. Haro-Poniatowski, J. Morales, N. Batina, Appl. Surf. Sci. 195, 175–186 (2002)

    Article  ADS  Google Scholar 

  15. M. Quintana, E. Haro-Poniatowski, N. Batina, Appl. Phys. A 79, 903–906 (2004)

    Article  ADS  Google Scholar 

  16. D. Zhang, Z. Li, K. Sugioka, J. Phys. Photonics 3, 042002 (2021)

    Article  ADS  Google Scholar 

  17. D.S. Zhang, Z.G. Li, C.H. Liang, Sci. China-Phys. Mech. Astron. 65, 274203 (2022)

    Article  ADS  Google Scholar 

  18. L. Chen, M. Hong, Opto-Electron Sci 1, 210007 (2022)

    Article  Google Scholar 

  19. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)

    Article  Google Scholar 

  20. E. Fazio, B. Gökce, A. De Giacomo, M. Meneghetti, G. Compagnini, M. Tommasini, F. Waag, A. Lucotti, C.G. Zanchi, P.M. Ossi, M. Dell’Aglio, L. D’Urso, M. Condorelli, V. Scardaci, F. Biscaglia, L. Litti, M. Gobbo, G. Gallo, M. Santoro, S. Trusso, F. Neri, Nanomaterials 10(11), 2317 (2020)

    Article  Google Scholar 

  21. H. Zeng, Du. Xi-Wen, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mater. 22, 1333 (2012)

    Article  Google Scholar 

  22. D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117(5), 3990 (2017)

    Article  Google Scholar 

  23. G. Guisbiers, H.H. Lara, R. Mendoza-Cruz, G. Naranjo, B.A. Vincent, X.G. Peralta, K.L. Nash, Nanomed.: Nanotechnol. Biol. Med. 13, 1095–1103 (2017)

    Article  Google Scholar 

  24. A. Ionin, A. Ivanova, R. Khmel’nitskii, Y. Klevkov, S. Kudryashov, N. Mel’nik, A. Nastulyavichus, A. Rudenko, I. Saraeva, N. Smirnov, D. Zayarny, A. Baranov, D.A. Kirilenko, P.N. Brunkov, A.L. Shakhmin, Appl. Surf. Sci. 436, 662–669 (2018)

    Article  ADS  Google Scholar 

  25. Qi. Chena, C. Zhang, J. Liu, Y. Ye, P. Li, C. Liang, Appl. Surf. Sci. 466, 1000–1006 (2019)

    Article  ADS  Google Scholar 

  26. Y. Cai, Y. Ye, P. Li, Y. Zhou, J. Liua, Z. Tian, Z. Yang, C. Liang, Appl. Surf. Sci. 473, 564–570 (2019)

    Article  ADS  Google Scholar 

  27. H.J. Jung, M.Y. Choi, J. Phys. Chem. C 118(26), 14647–14654 (2014)

    Article  Google Scholar 

  28. Y. Marcus, The Properties of Solvents (Wiley, Hoboken, 1998)

    Google Scholar 

  29. R.M. Tilaki, S.M. Mahdavi, Appl. Phys. A 84(1), 215–219 (2006)

    Article  ADS  Google Scholar 

  30. G. Compagnini, A.A. Scalisi, O. Puglisi, J. Appl. Phys. 94(12), 7874–7877 (2003)

    Article  ADS  Google Scholar 

  31. G. Lucovsky, A. Mooradian, W. Taylor, G.B. Wright, R.C. Keezer, Solid State Commun. 5, 113–117 (1967)

    Article  ADS  Google Scholar 

  32. K. Nagata, K. Ishibashi, Y. Miyamoto, Jpn. J. Appl. Phys. 20, 463 (1981)

    Article  ADS  Google Scholar 

  33. A.H. Goldan, C. Li, S.J. Pennycook, J. Schneider, A. Blom, W. Zhao, J. Appl. Phys. 120, 135101 (2016)

    Article  ADS  Google Scholar 

  34. M. Vahdati, T.T. Moghadam, Sci. Rep. (2020). https://doi.org/10.1038/s41598-019-57333-7. (Article number: 510)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Universidad Autónoma Metropolitana and CONACYT through Grant INFR-2015-255579 ‘‘Infraestructura para Laboratorio de Interacción Radiación Materia y Espectroscopía de Procesos Ultrarrápidos (< 40 fs)” for funding towards the purchase of the femtosecond laser system. C. A. G. and L. G. M. L. are grateful to CONACYT for funding through Grant 683 in the framework of the ‘‘Cátedras CONACYT” scheme. The ININ support through the project CB-004 is acknowledged. Also, the technical support with TEM measurements provided by I. Martinez Mera is recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Haro-Poniatowski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haro-Poniatowski, E., Escobar-Alarcón, L., Hernández-Pozos, J.L. et al. Synthesis and characterization of selenium nanoparticles obtained by femtosecond pulsed laser ablation in liquid media. Appl. Phys. A 128, 827 (2022). https://doi.org/10.1007/s00339-022-05956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05956-5

Keywords

Navigation