Skip to main content
Log in

Intercluster interaction and critical behavior near magnetic phase transition of electron-doped ceramic manganite Ca0.85Nd0.15MnO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Detailed study of magnetic critical behavior through systematic analysis of magnetization data near phase transition of electron-doped ceramic Ca0.85Nd0.15MnO3(CNMO) material is accomplished. The Arrott plot generated using isothermally measured magnetization data possesses positive slopes and it signifies 2nd-order ferromagnetic (FM)- to paramagnetic (PM)-state phase transition in Nd3+ cation-doped CNMO magnetic specimen. Magnetic relaxation study of CNMO ceramic compound establishes that this compound shows significant inter-cluster interactions. From the comprehensive study of isothermally measured magnetization data using modified Arrott plot (MAP) technique, we have evaluated the critical constants of CNMO compound as β = 0.45 and γ = 0.3. The critical exponent δ was independently calculated from the careful analysis of critical isotherm as δ = 1.65. Thus, the exponents \(\beta\), \(\gamma\) and δ of CNMO compound show significant deviation from the critical constants describing the materials belonging to standard universality classes. However, the evaluated critical constants of Nd3+ cation-doped CNMO compound obey the scaling equation \(M(H,\varepsilon ) = \varepsilon^{\beta } f_{ \pm } (H/\varepsilon^{\beta + \gamma } )\) and establish the reliability of these exponents. The quite unusual values of these magnetic critical exponents are a consequence of magnetic-phase inhomogeneity and strong inter-cluster interaction present in the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.E. Stanley, Introduction to phase transitions and critical phenomena (Oxford University Press, London, 1971)

    Google Scholar 

  2. M. Seeger, S.N. Kaul, H. Kronmuller, R. Reisser, Phys. Rev. B 51, 12585 (1995)

    Article  ADS  Google Scholar 

  3. J.L. Alonso, L.A. Fernandez, F. Guinea, V. Laliena, V. Martín-Mayor, Nucl. Phys. B 596, 587 (2001)

    Article  ADS  Google Scholar 

  4. A. Arrott, J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967)

    Article  ADS  Google Scholar 

  5. A. Nasri, E.K. Hlil, M. Ellouze, F. Elhalouani, J. Supercond Nov Magn 27, 2757–2763 (2014)

    Article  Google Scholar 

  6. Ch.V. Mohan, M. Seeger, H. Kronmuller, P. Murugaraj, J. Maier, J. Magn. Magn. Mater. 183, 348 (1998)

    Article  ADS  Google Scholar 

  7. A.B. Hassine, S. Hcini, A. Dhahri, M.L. Bouazizi, E.K. Hlil, M. Oumezzine, J. Mol. Struct. 1142, 102–109 (2017)

    Article  ADS  Google Scholar 

  8. J. Fan, L. Ling, B. Hong, L. Zhang, L. Pi, Y. Zhang, Phys. Rev. B 81, 144426 (2010)

    Article  ADS  Google Scholar 

  9. E. Bouzaiene, A.H. Dhahri, J. Dhahri, E.K. Hlil, K. Taibi, Appl. Phys. A 126, 12 (2020)

    Article  ADS  Google Scholar 

  10. R. Hamdi, J. Khelifi, I. Walha, E. Dhahri, Appl. Phys. A 126, 29 (2020)

    Article  ADS  Google Scholar 

  11. S.B. Abdelkhalek, N. Kallel, S. Kallel, O. Pena, M. Oumezzine, J. Magn. Magn. Mater. 324, 3615–3619 (2012)

    Article  ADS  Google Scholar 

  12. D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, J.F. Mitchell, Phys. Rev. Lett. 89, 227202 (2002)

    Article  ADS  Google Scholar 

  13. E. Za Mohamed, E. Tka, J. Dhahri, E.K. Hlil, J. Alloys Comp. 619, 520–526 (2015)

    Article  Google Scholar 

  14. M. Triki, E. Dhahri, E.K. Hlil, J. Solid State Chem. 201, 63–67 (2013)

    Article  ADS  Google Scholar 

  15. P. Sarkar, T. Roy, N. Khan, P. Mandal, Phys. B Condens. Matter 583, 412050 (2020)

    Article  Google Scholar 

  16. M. Hsini, L. Ghivelder, Phys. B Condens. Matter 615, 413055 (2021)

    Article  Google Scholar 

  17. N.T. Dung, Y. Pham, D.S. Lam, N.V. Dang, A.G. Gamzatov, A.M. Aliev, D.H. Kim, S.C. Yu, T.D. Thanh, J. Mater. Res. Technol. 9(6), 12747–12755 (2020)

    Article  Google Scholar 

  18. P.T. Phong, L.T.T. Ngan, N.V. Dang, L.H. Nguyen, P.H. Nam, D.M. Thuy, N.D. Tuan, L.V. Bau, I.J. Lee, J. Magn. Magn. Mater. 449, 558–566 (2018)

    Article  ADS  Google Scholar 

  19. I.S. Debbebi, H. Omrani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, J. Phys. Chem. Solids 113, 67–73 (2018)

    Article  ADS  Google Scholar 

  20. B. Sudakshina, M.V. Suneesh, B. Arun, D. Chandrasekhar Kakarla, M. Vasundhara, J. Magn. Magn. Mater. 548, 168980 (2022)

    Article  Google Scholar 

  21. J. Yang, Y.P. Lee, Y. Li, Phys. Rev. B 76, 054442 (2007)

    Article  ADS  Google Scholar 

  22. Y. Wang, H.J. Fan, Y. Phys, Rev. B 83, 224409 (2011)

    Article  Google Scholar 

  23. S.K. Giri, P. Dasgupta, A. Poddar, T.K. Nath, EPL 105, 47007 (2014)

    Article  ADS  Google Scholar 

  24. C. Martin, A. Maignan, M. Hervieu, B. Raveau, Phys. Rev. B 60, 12191 (1999)

    Article  ADS  Google Scholar 

  25. M. Pissas, J. Magn. Magn. Mater. 272–276, 1821–1822 (2004)

    Article  ADS  Google Scholar 

  26. J. Yang, Y.P. Lee, Y. Li, J. Appl. Phys. 102, 033913 (2007)

    Article  ADS  Google Scholar 

  27. A. Prusty, S. Mahana, A. Gloskovskii, D. Topwal, U. Manju, J. Alloys Comp. 883, 160862 (2021)

    Article  Google Scholar 

  28. A. Kumar, I. Hussain, S.N. Khan, B.H. Koo, J. Alloys Comp. 845, 156218 (2020)

    Article  Google Scholar 

  29. A. Arulraj, R.E. Dinnebier, S. Carlson, M. Hanfland, S. van Smaalen, Prog. Solid State Ch. 35, 367–377 (2007)

    Article  Google Scholar 

  30. Y. Tomioka, Y. Tokura, Phys. Rev. B 70, 014432 (2004)

    Article  ADS  Google Scholar 

  31. K.H. Ahn, T. Lookman, A.R. Bishop, J. Appl. Phys. 99, 08A703 (2006)

    Article  Google Scholar 

  32. M. Zarifi, P. Kameli, M.I. Nouraddini, L. Kotsedi, M. Maaza, J. Alloys Comp. 792, 1095–1101 (2019)

    Article  Google Scholar 

  33. A. Swain, P.S.A. Kumar, V. Gorige, J. Magn. Magn. Mater 485, 358–368 (2019)

    Article  ADS  Google Scholar 

  34. C. Yaicle, C. Frontera, J.L. Garcia-Munoz, C. Martin, A. Maignan, G. Andre, F. Bouree, C. Ritter, I. Margiolaki, Phys. Rev. B 74, 144406 (2006)

    Article  ADS  Google Scholar 

  35. K.R. Poeppelmeier, M.E. Leonowicz, J.C. Scanlon, J.M. Longo, W.B. Yelon, J. Solid State Chem. 45, 71 (1982)

    Article  ADS  Google Scholar 

  36. G. Kozhina, V. Mitrofanov, O. Fedorova, A. Fetisov, A. Murzakaev, S. Estemirova, J. Alloys Comp. 864, 158816 (2021)

    Article  Google Scholar 

  37. R. Rao, Y.Y. Han, X.C. Kan, X. Zhang, M. Wang, N.X. Qian, G.H. Zheng, Y.Q. Ma, J. Alloys Comp. 837, 155476 (2020)

    Article  Google Scholar 

  38. R. Rozilah, N. Ibrahim, A.K. Yahya, Solid State Sci. 87, 64–80 (2019)

    Article  ADS  Google Scholar 

  39. P. Meenakshi, A. Bisht, A. Gaur, R.N. Mahato, Phys B Condens. Matter 602, 412521 (2021)

    Article  Google Scholar 

  40. J.B. Goodenough, J.S. Zhou, Chem. Mater. 10, 2980–2993 (1998)

    Article  Google Scholar 

  41. S. Kundu, T.K. Nath, Phil Mag 93, 2527–2548 (2013)

    Article  ADS  Google Scholar 

  42. E.O. Wollan, W.C. Koehler, Phys. Rev. 100, 545–563 (1955)

    Article  ADS  Google Scholar 

  43. J.B. MacChesney, H.J. Williams, J.F. Potter, R.C. Sherwood, Phys. Rev. 164, 779–785 (1967)

    Article  ADS  Google Scholar 

  44. S. Saha, S. Bandyopadhyay, I. Das, J. Alloys Comp. 870, 159465 (2021)

    Article  Google Scholar 

  45. N.T. Dung, Y. Pham, D.S. Lam, N.V. Dang, A.G. Gamzatov, A.M. Aliev, D.-H. Kim, S.-C. Yu, T.D. Thanh, J. Mater. Res. Technol. 9, 12747–12755 (2020)

    Article  Google Scholar 

  46. D.N.H. Nam, R. Mathieu, P. Nordblad, N.V. Khiem, N.X. Phuc, Phys. Rev. B 62, 1027–1032 (2000)

    Article  ADS  Google Scholar 

  47. P. Tong, B.J. Kim, D. Kwon, T. Qian, S.I. Lee, S.W. Cheong, B.G. Kim, Phys. Rev. B 77, 184432 (2008)

    Article  ADS  Google Scholar 

  48. R.G. Palmer, D.L. Stein, E. Abrahams, P.W. Anderson, Phys. Rev. Lett. 53, 958–961 (1984)

    Article  ADS  Google Scholar 

  49. M. Ulrich, J.G. Otero, J. Rivas, A. Bunde, Phys. Rev. B 67, 024416–024419 (2003)

    Article  ADS  Google Scholar 

  50. M.E. Fisher, Rep. Prog. Phys. 30, 615 (1967)

    Article  ADS  Google Scholar 

  51. F. Ayadi, S. Ammar, S. Nowak, W. Cheikhrouhou-Koubaa, Y. Regaieg, M. Koubaa, J. Monnier, L. Sicard, J. Alloys Comp. 759, 52–59 (2018)

    Article  Google Scholar 

  52. S.K. Banerjee, Phys. Lett. 12, 16 (1964)

    Article  ADS  Google Scholar 

  53. I.Z. Al-Yahmadi, A.M. Gismelseed, F. Al Ma’Mari, A.D. Al-Rawas, S.H. Al-Harthi, A.Y. Yousif, H.M. Widatallah, M.E. Elzain, M.T.Z. Myint, J. Alloys Comp. 875, 159977 (2021)

    Article  Google Scholar 

  54. I.Z. Al-Yahmadi, A. Gismelssed, I.A. Abdel-Latif, F. Al Ma’Mari, A. Al-Rawas, S. Al- Harthi, I.A. Al-Omari, A. Yousf, H. Widatallah, M. ElZain, M.T.Z. Myint, J. Alloys Comp. 857, 157566 (2021)

    Article  Google Scholar 

  55. M.H. Ehsani, T. Raoufi, J. Alloys Comp. 769, 649–659 (2018)

    Article  Google Scholar 

  56. N. Ameur, M. Triki, E. Dhahri, E.K. Hlil, Solid State Commun. 292, 40–49 (2019)

    Article  ADS  Google Scholar 

  57. A.K. Pramanik, A. Banerjee, Phys. Rev. B 79, 214426 (2009)

    Article  ADS  Google Scholar 

  58. J.S. Kouvel, M.E. Fisher, Phys. Rev. B 136, A1626–A1632 (1964)

    Article  ADS  Google Scholar 

  59. D.R. Munazat, B. Kurniawan, D.S. Razaq, K. Watanabe, H. Tanaka, Phys. B Condens. Matter 592, 412227 (2020)

    Article  Google Scholar 

  60. M. Khlifi, A. Tozri, M. Bejar, E. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 324, 2142–2146 (2012)

    Article  ADS  Google Scholar 

  61. A. Omri, A. Tozri, M. Bejar, E. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 324, 3122–3128 (2012)

    Article  ADS  Google Scholar 

  62. B. Widom, J. Chem. Phys. 43, 3898–3905 (1965)

    Article  ADS  Google Scholar 

  63. N.A. Liedienov, V.M. Kalita, A.V. Pashchenko, Yu.I. Dzhezherya, I.V. Fesych, Q. Li, G.G. Levchenko, J. Alloys Comp. 836, 155440 (2020)

    Article  Google Scholar 

  64. MKh. Hamad, Y. Maswadeh, Kh.A. Ziq, J. Magn. Magn. Mater. 491, 165609 (2019)

    Article  Google Scholar 

  65. F. Rivadulla, M.A. Lopez-Quintela, J. Rivas, Phys. Rev. Lett. 93, 167206 (2004)

    Article  ADS  Google Scholar 

  66. S.N. Kaul, J. Magn. Magn. Mater. 53, 5 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to University of Kalyani where structural and magnetic measurements were carried out. Authors are specially thankful to Dr. Sudipta Pal, Department of Physics, University of Kalyani for providing measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ripan Nag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, R., Biswas, B. Intercluster interaction and critical behavior near magnetic phase transition of electron-doped ceramic manganite Ca0.85Nd0.15MnO3. Appl. Phys. A 128, 535 (2022). https://doi.org/10.1007/s00339-022-05671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05671-1

Keywords

Navigation