Skip to main content
Log in

In situ grown ZnO nanoparticles using Begonia leaves–dielectric, magnetic, filter utility and tribological properties for mechano-electronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Biogenic zinc oxide (ZnO) nanoparticles are successfully synthesized by solvothermal method using various concentrations Begonia leaf extract as capping agent. The single nano-crystalline wurtzite-type structure is confirmed by X-ray powder diffraction. HRTEM observations reveal spherical-shape particles at the nanoscale. The calculated optical band gap of 3.51 eV enables for optimum use in solar cell applications. It is found that both the dielectric constant and dielectric loss are inversely proportional to the frequency while both are directly proportional to the temperature. This implies that the charge transport process along with polarizability is impacted by the space charge. Magnetic measurements indicate the presence of weak ferromagnetic component attributed to oxygen vacancies, besides the existence of a magnetic transition from diamagnetic into paramagnetic. The filter utility and the mechanical–tribological parameters are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data are included and no separate data/supplementary data.

References

  1. S.K. Chaudhuri, L. Malodia, Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl. Nanosci. 7, 501–512 (2017)

    Article  ADS  Google Scholar 

  2. R.S. Prakasham, B.S. Kumar, Y.S. Kumar, K.P. Kumar, Production and characterization of protein encapsulated silver nanoparticles by marine isolate Streptomyces parvulus SSNP11. Indian J. Microbiol. 54(3), 329–336 (2014)

    Article  Google Scholar 

  3. M.N. Nadagouda, R.S. Varma, Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 10(8), 859–862 (2008)

    Article  Google Scholar 

  4. A.I. Borhan, A.R. Iordan, M.N. Palamaru, Correlation between structural, magnetic and electrical properties of nanocrystalline Al3+ substituted zinc ferrite. Mat. Res. Bull. 48(7), 2549–2556 (2013)

    Article  Google Scholar 

  5. J. Singh, R.C. Singh, Structural, optical, dielectric and transport properties of ball mill synthesized ZnO-V2O5 nano-composites. J. Mol. Struct. 1215, 128261 (2020)

    Article  Google Scholar 

  6. B. Baruwati, V. Polshettiwar, R.S. Varma, Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 11(7), 926–930 (2009)

    Article  Google Scholar 

  7. G. Sharmila, M. Thirumarimurugan, C. Muthukumaran, Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem. J. 145, 578–587 (2019)

    Article  Google Scholar 

  8. J. Fowsiya, G. Madhumitha, N.A. Al-dhabi, M. Valan, Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J. Photochem. Photobiol. B: Biol. 162, 395–401 (2016)

    Article  Google Scholar 

  9. K. Elumalai, S. Velmurugan, Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 345, 329–336 (2015)

    Article  ADS  Google Scholar 

  10. H. Colak, E. Karakose, Green synthesis and characterization of nanostructured ZnO thin films using Citrus aurantifolia (lemon) peel extract by spin-coating method. J. Alloys Compd. 690, 658–662 (2017)

    Article  Google Scholar 

  11. A. Diallo, B.D. Ngom, E. Park, M. Maaza, Green synthesis of ZnO nanoparticles by Aspalathus linearis: structural & optical properties. J. Alloys Compd. 646, 425–430 (2015)

    Article  Google Scholar 

  12. P. Mishra, Y.P. Singh, H.P. Nagaswarupa, S.C. Sharma, Y.S. Vidya, S.C. Prashantha, H. Nagabhushana, K.S. Anantharaju, S. Sharma, L. Renuka, Caralluma fimbriata extract induced green synthesis, structural, optical and photocatalytic properties of ZnO nanostructure modified with Gd. J. Alloys Compd. 685, 656–669 (2016)

    Article  Google Scholar 

  13. D. Wang, H. Liu, Y. Ma, J. Qu, J. Guan, N. Lu, Recycling of hyper-accumulator: synthesis of ZnO nanoparticles and photocatalytic degradation for dichlorophenol. J. Alloys Compd. 680, 500–505 (2016)

    Article  Google Scholar 

  14. R.P. Singh, V.K. Shukla, R.S. Yadav, P.K. Sharma, P.K. Singh, A.C. Pandey, Biological approach of zinc oxide nanoparticles formation and its characterization. Adv. Mater. Lett. 2(4), 313–317 (2011)

    Article  Google Scholar 

  15. N.Y. Mostafa, Z.K. Heiba, M.M. Ibrahim, Structure and optical properties of ZnO produced from microwave hydrothermal hydrolysis of tris(ethylenediamine)zinc nitrate complex. J. Mol. Struct. 1079, 480–485 (2015)

    Article  ADS  Google Scholar 

  16. J. Wojnarowicz, T. Chudoba, W. Lojkowski, A review of microwave synthesis of zinc oxide nanomaterials: reactants process parameters and morphologies. Nanomaterials 10(6), 1086 (2020). https://doi.org/10.3390/nano10061086

    Article  Google Scholar 

  17. W. Haiss, N.T. Thanh, J. Aveyard, D.G. Fernig, Determination of size and concentration of gold nanoparticles from UV−Vis spectra. Anal. Chem. 79(11), 4215–4221 (2007)

    Article  Google Scholar 

  18. V. Amendola, M. Meneghetti, Size evaluation of gold nanoparticles by UV-Vis spectroscopy. J. Phys. Chem. C. 113(11), 4277–4285 (2009)

    Article  Google Scholar 

  19. J.R. Heath, Covalency in semiconductor quantum dots. Chem. Soc. Rev. 27(1), 65–71 (1998)

    Article  Google Scholar 

  20. G. Williams, P.V. Kamat, Graphene-semiconductor nanocomposites: excited-state Interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009)

    Article  Google Scholar 

  21. M.E. Lines, A.M. Glass, Principle and application of ferroelectrics (Oxford University Press, Oxford, UK, 1977)

    Google Scholar 

  22. S.M. Dharmaprakash, R.P. Mohan, Dielectric properties of hydrated barium oxalate and barium cadmium oxalate crystals. J. Mater. Sci. Lett. 8, 1167–1168 (1989)

    Article  Google Scholar 

  23. C.P. Smyth, Dielectric behaviour and structure (Megraw Hill, New York, 1965)

    Google Scholar 

  24. P. Saravanan, K. SenthilKannan, A. Mustafa, M. Vimalan, M. Bououdina, S. Balasubramanian, M. Meena, S. Tamilselvan, Dielectric and magnetic properties of Allium cepa and Raphanus sativus extracts biogenic ZnO Nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 590–603 (2021)

    Google Scholar 

  25. P. Saravanan, K. SenthilKannan, R. Divya, M. Vimalan, S. Tamilselvan, D. Sankar, A perspective approach towards appreciable size and cost-effective solar cell fabrication by synthesizing ZnO nanoparticles from Azadirachta indica leaves extract using domestic microwave oven. J. Mater. Sci.: Mater. Electron. 31(5), 4301–4309 (2020)

    Google Scholar 

  26. V.N. Joshi, Photoconductivity (Marcel Dekker, New York, 1990)

    Google Scholar 

  27. P. Saravanan, K. SenthilKannan, M. Vimalan, S. Tamilselvan, D. Sankar, Biofriendly and competent domestic microwave assisted method for the synthesis of ZnO nanoparticles from the extract of Azadirachta indica leaves. Mater. Today: Proc. 33(7), 3160–3163 (2020)

    Google Scholar 

  28. M. Bououdina, K. Omri, M. El-Hilo, A. El Amiri, O.M. Lemine, A. Alyamani, E.K. Hlil, H. Lassri, L. El Mir, Structural and magnetic properties of Mn-doped ZnO nanocrystals. Physica E 56, 107–112 (2014)

    Article  ADS  Google Scholar 

  29. S. Azzaza, M. El-Hilo, S. Narayanan, J. Judith Vijaya, N. Mamouni, A. Benyoussef, A. El Kenz, M. Bououdina, Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles. Mater. Chem. Phys. 143(3), 1500–1507 (2014)

    Article  Google Scholar 

  30. M. Bououdina, A.A. Dakhel, M. El-Hilo, D.H. Anjum, M.B. Kanoun, S. Goumri-Said, Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: an experimental and first-principles study. RSC Adv. 5(42), 33233–33238 (2015)

    Article  ADS  Google Scholar 

  31. K. Senthilkannan, D. Balakumar, M. Jothibas, Fluorescence, filter, nano tribological studies of 12-(4-Chlorophenyl)-9,9-Dimethyl-9,10-Dihydro-8H-Benzo [A] Xanthen-11(12H)-One- (CPDDHBXH) macro and nano crystals. Mater. Today: Proc. 33(1), 4163–4166 (2020)

    Google Scholar 

  32. K. Senthilkannan, P. Baskaran, R. Seenivasan, P. Settu, Tribological, filter studies of 3-Bromo-2-Hydroxy benzoic acid (BHBA) macro and nano crystals. Mater. Today: Proc. 33, 4145–4147 (2020)

    Google Scholar 

  33. K. Senthilkannan, P. Baskaran, R. Seenivasan, P. Settu, Tribological, Filter, FTIR and fluorescence studies of L-Alaninium tartrate (LAT) Macro and nano crystals. Mater. Today: Proc. 33, 4148–4150 (2020)

    Google Scholar 

  34. M. Kolanjinathan, K. SenthilKannan, D. Sankar, P. Periyathambi, M. Iyanar, S. Gunasekaran, P. Baskaran, M. Meena, M. Vimalan, Dielectric, fluorescence, filter, nano tribological and photoconductivity studies of 4-(4-chlorophenyl)-7,7-dimethyl-7,8-dihydro-4H-1-benzopyran-2,5(3H,6H)-dione (CPDMDHHBPHHD) macro and nano crystals. J Mater Sci: Mater Electron. 31, 16907–16917 (2020)

    Google Scholar 

  35. P. Periyathambi, K. Senthilkannan, S.T. Aadithya Narayanan, M. Jothibas, Fluorescence and filter characterizations of NaBr-added L-alanine (LANB)–A comparative analysis in macro and nano scaled crystals. Mater. Today: Proc. 33, 3766–3769 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the EGSP group, The New College, Thirumalai Engg. College for their support and for their permission rendered.

Funding

This paper attracts no funding from any type of source.

Author information

Authors and Affiliations

Authors

Contributions

All the authors read and confirm for publishing this paper and no conflict of interest among them and are equally shared the work.

Corresponding authors

Correspondence to M. Vimalan or K. SenthilKannan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maalmarugan, J., Ferin, R.Z., Joesna, G. et al. In situ grown ZnO nanoparticles using Begonia leaves–dielectric, magnetic, filter utility and tribological properties for mechano-electronic applications. Appl. Phys. A 128, 217 (2022). https://doi.org/10.1007/s00339-022-05371-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05371-w

Keywords

Navigation