Skip to main content

Advertisement

Log in

Primary creep X80 pipeline steel at room temperature using molecular dynamics simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gas transformation field recognized that X80 pipeline steel would fail in operation occasionally some days after pressure stabilized, commonly referred to as a time-delayed failure. Standard creep test usually presents an average and macrostructure results, but understand creep behavior at crystal size level is still interesting. This paper presents the analysis results of the primary creep behavior at dislocation evolution under some stress levels using molecular dynamics (MD) simulation. The polycrystalline model in the base metal region under the different retaining stresses (305 MPa, 427 MPa and 549 MPa), the different stress rates (25 MPa/ps, 50 MPa/ps and 100 MPa/ps) and the cyclic loading history are applied and analyzed using MD simulation. The effects of retaining stress, stress rate and cyclic loading history on the creep deformation of the X80 pipeline steel are investigated. The primary creep increases with the increment of retain stress, but little moving dislocation is produced under 50% minimum yield stress (305 MPa), the primary creep at reloaded retain stress is lower than that of the first load, which is thought as the decrease of moving dislocations. The high stress-loaded rate also results in a decrease primary creep. In addition, the defects and dislocation density under different conditions are analyzed and the room temperature creep mechanism of the model is discussed. The results obtained from this study will provide a reference to the research of room temperature creep of X80 pipeline steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Briottet, R. Batisse, G. de Dinechin, P. Langlois, L. Thierse, Recommendations on X80 steel for the design of hydrogen gas transmission pipelines. Int. J. Hydrog. Energy 37(11), 9423–9430 (2012)

    Article  Google Scholar 

  2. J.L. Kennedy, Oil and gas pipeline fundamentals (Pennwell corporate, England, 1993)

    Google Scholar 

  3. S. Meimeth, F. Grimpe, H. Meuser, H. Siegel, C. Stallybrass, C.J. Heckmann, Development, state of the art and future trends in design and production of heavy plates in X80 steel grades. Stahl Eisen 126(10), 49 (2006)

    Google Scholar 

  4. M.S. Kumar, M. Sujata, M.A. Venkataswamy, S.K. Bhaumik, Failure analysis of a stainless-steel pipeline. Eng. Fail. Anal. 15(5), 497–504 (2008)

    Article  Google Scholar 

  5. L.Y. Xu, Y.F. Cheng, Reliability and failure pressure prediction of various grades of pipeline steel in the presence of corrosion defects and pre-strain. Int. J. Press. Vessel. Pip. 89, 75–84 (2012)

    Article  Google Scholar 

  6. R. Ghajar, G. Mirone, A. Keshavarz, Ductile failure of X100 pipeline steel-experiments and fractography. Mater. Des. 43, 513–525 (2013)

    Article  Google Scholar 

  7. T. Masayuki, T. Tetsuki, N. Takanori, K. Hidetaka, A. Hideo, Room temperature creep behavior of stainless steels. Tetsu-to-Hagane 79(1), 98–104 (2009)

    Google Scholar 

  8. S.J. Garwood, Time dependent ductile crack extension in A533B class 1 steel. Nucl. Eng. Des. 91, 179–206 (1986)

    Article  Google Scholar 

  9. B.N. Leis, F.W. Brust, P.M. Scot. Prediction of inelastic crack growth in ductile line pipe materials, in 7th Symposium on Line Pipe Research American Gas Association, Paper 16, Houston (1986)

  10. W. Bendick, L. Cipolla, J. Gabrel, J. Hald, New ECCC assessment of creep rupture strength for steel grade X10CrMoVNb9-1 (grade 91). Int. J. Press. Vessels Pip. 87(6), 304–309 (2010)

    Article  Google Scholar 

  11. F. Abe, T. Horiuchi, M. Taneike, K. Sawada, Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature. Mater. Sci. Eng., A 378(1–2), 299–303 (2004)

    Article  Google Scholar 

  12. F.W. Brust, B.N. Leis, M. Nakagaki. A study of time-dependent crack growth at room temperature, in International Conference on Computational Engineering Science. vol. 1, pp. 13.1–4 (1988)

  13. N. Wang, Z. Wang, K.T. Aust, U. Erb, Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng., A 237(2), 150–158 (1997)

    Article  Google Scholar 

  14. T.H. Alden, Theory of plastic and viscous deformation. Metall. Mater. Trans. A. 18(5), 811–826 (1987)

    Article  ADS  Google Scholar 

  15. T.H. Alden, Strain hardening during low temperature creep of 304 stainless steel. Acta Metall. 35(11), 2621–2626 (1987)

    Article  Google Scholar 

  16. S.H. Wang, W. Chen, A study on the pre-cyclic-load-induced burst of creep deformation of a pipeline steel under subsequent static load. Mater. Sci. Eng. A 325(1–2), 144–151 (2002)

    Article  Google Scholar 

  17. S.H. Wang, W. Chen, Room temperature creep deformation and its effect on yielding behaviour of a line pipe steel with discontinuous yielding. Mater. Sci. Eng. A 301(2), 147–153 (2001)

    Article  Google Scholar 

  18. J. Zhao, T. Mo, D. Nie, The occurrence of room-temperature creep in cracked 304 stainless steel specimens and its effect on crack growth behavior. Mater. Sci. Eng. A 483, 572–575 (2008)

    Article  Google Scholar 

  19. API SPEC 5L specification for line pipe (45th edition). American petroleum institute, Washington DC, (2012)

  20. H.X. Zhu, S.M. Thorpe, A.H. Windle, The geometrical properties of irregular two-dimensional Voronoi tessellations. Philos. Mag. A 81(12), 2765–2783 (2001)

    Article  ADS  Google Scholar 

  21. Z.J. Zheng, J.L. Yu, J.R. Li, Dynamic crushing of 2D cellular structures: a finite element study. Int. J. Impact Eng. 32, 650–664 (2005)

    Article  Google Scholar 

  22. J.J. Zhang, Z.H. Wang, L.M. Zhao, Dynamic response of functionally graded cellular materials based on the Voronoi model. Compos. B 85, 176–187 (2016)

    Article  Google Scholar 

  23. P. Hirel, Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015)

    Article  ADS  Google Scholar 

  24. H. Talebi, M. Silani, T. Rabczuk, Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv. Eng. Softw. 80, 82–92 (2015)

    Article  Google Scholar 

  25. H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, T. Rabczuk, A computational library for multiscale modeling of material failure. Comput. Mech. 53(5), 1047–1071 (2014)

    Article  MathSciNet  Google Scholar 

  26. Y. Jiang, S. Dehghan, A. Karimipour, D. Toghraie, Z. Li, I. Tlili, Effect of copper nanoparticles on thermal behavior of water flow in a zig-zag nanochannel using molecular dynamics simulation. Int. Commun. Heat Mass Transf. 116, 104652 (2020)

    Article  Google Scholar 

  27. A. Mosavi, M. Hekmatifar, A.A. Alizadeh, D. Toghraie, R. Sabetvand, A. Karimipour, The molecular dynamics simulation of thermal manner of Ar/Cu nanofluid flow: the effects of spherical barriers size. J. Mol. Liq. 319, 114183 (2020)

    Article  Google Scholar 

  28. M. Hekmatifar, D. Toghraie, A. Khosravi, F. Saberi, F. Soltani, R. Sabetvand, A.S. Goldanlou, The study of asphaltene desorption from the iron surface with molecular dynamics method. J. Mol. Liq. 318, 114325 (2020)

    Article  Google Scholar 

  29. D.C. Rapaport, The art of molecular dynamics simulation (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  30. L. Verlet, Computer ‘‘experiments” on classical fluids. I. thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159(1), 98–103 (1967)

    Article  ADS  Google Scholar 

  31. Y.X. Li, M. Hekmatifar, Y.L. Sun, A. Alizadeh, A.A. Aly, D. Toghraie, D. Baleanu, R. Sabetvand, Evaluation the vibrational behavior of carbon nanotubes in different sizes and chiralities and argon flows at supersonic velocity using molecular dynamics simulation. J. Mol. Liq. 339, 116796 (2021)

    Article  Google Scholar 

  32. Y.P. Peng, M. Zarringhalam, M. Hajian, D. Toghraie, S.J. Tadi, M. Afrand, Empowering the boiling condition of argon flow inside a rectangular microchannel with suspending silver nanoparticles by using of molecular dynamics simulation. J. Mol. Liq. 295, 111721 (2019)

    Article  Google Scholar 

  33. M.W. Finnis, J.E. Sinclair, A simple empirical N-body potential for transition metals. Philos. Mag. A 50(1), 45–55 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Numbers: 11572253 and 11972302). The authors would like to gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Contributions

PW contributed to methodology; data curation; validation; writing—original draft. WH contributed to investigation; methodology; validation; writing—original draft. JX contributed to formal analysis; writing—review & editing. JD contributed to conceptualization; software; validation; writing—original draft. FW contributed to methodology; investigation; validation; writing—review & editing. CH contributed to methodology; formal analysis; writing—review & editing.

Corresponding author

Correspondence to Fenghui Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Hao, W., Xie, J. et al. Primary creep X80 pipeline steel at room temperature using molecular dynamics simulation. Appl. Phys. A 128, 204 (2022). https://doi.org/10.1007/s00339-022-05339-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05339-w

Keywords

Navigation