Skip to main content

Advertisement

Log in

Large magnetoresistance and unexpected low thermal conductivity in topological semimetal CrP4 single crystal

  • T.C. : Materials by Design Under Pressure: experiments and theory
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We fabricate CrP4 single crystal under high pressure and high temperature at 5 GPa and 1373 K. The comprehensive physical properties including electronic transport, magnetic properties, specific heat, Hall, thermal Seebeck and thermal conductivity are reported here. The resistivity shows a good metallic conductivity and T2.7 law relation in the low temperature, which indicates a weak correlation of electrons. It is interesting to note that CrP4 shows large magnetoresistance (MR) of 500% under T = 2 K and B = 9 T, and the MR does not reach saturation until 9 T. The mechanism of large MR in CrP4 is interpreted as the Fermi surface anisotropy. The Hall measurement shows that there is only one single type of carriers in CrP4 with holes. CrP4 exhibits paramagnetic behavior observed from the magnetic susceptibility measurement. Though CrP4 exhibits high electrical conductivity, unexpected low thermal conductivity is observed at low temperature, which is due to the zigzag chain of CrP6 octahedra along the c-axis. Low thermal conductivity is useful to design thermoelectric materials or devices by properly doping in CrP4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.O. Oliynyk, Y.F. Lomnytska, M.V. Dzevenko, S.S. Stoyko, A. Mar, Inorg. Chem. 52, 983 (2013)

    Article  Google Scholar 

  2. Z.H. Yu, C,Y. Li, H.Z. Liu, Solid State Commun. 152, 509 (2012)

  3. Z.H. Yu, W. Wu, J.G. Zhao, C.Y. Li, J.G. Cheng, J.L. Luo, L. Wang, H.K. Mao, P. Natl, Acad. Sci. USA 112, 14766 (2015)

    Article  ADS  Google Scholar 

  4. J.G. Cheng, K. Matsubayashi, W. Wu, J.P. Sun, F.K. Lin, J.L. Luo, Y. Uwatoko, Phys. Rev. Lett. 114, 117001 (2015)

  5. B. Owens-Baird, J.Y. Xu, D.Y. Petrovykh, O. Bondarchuk, Y. Ziouani, N. González-Ballesteros, P. Yox, F.M. Sapountzi, H. Niemantsverdriet, Y.V. Kolenko, K. Kovnir, Chem. Mater. 31, 3407 (2019)

    Article  Google Scholar 

  6. R. Kanno, N. Kinomura, M. Koizumi, S. Nishigaki, K. Nakatsu, Acta Cryst. B 36, 2206 (1980)

    Article  Google Scholar 

  7. X.L. Liu, Z.H. Yu, Q.F. Liang, C.Y. Zhou, H.Y. Wang, J.G. Zhao, X. Wang, N. Yu, Z.Q. Zou, Y.F. Guo, Chem. Mater. 32, 8781 (2020)

    Article  Google Scholar 

  8. E.J. Cheng, W. Xia, X.B. Shi, Z.H. Yu, L. Wang, L.M. Yan, D.C. Peets, C.C. Zhu, H. Su, Y. Zhang, D.Z. Dai, X. Wang, Z.Q. Zou, N. Yu, X.F. Kou, W.G. Yang, W.W. Zhao, Y.F. Guo, S.Y. Li, NPJ Quantum Mater. 5, 38 (2020)

  9. H. Georg, V. Schnering, W. Hoenle, Chem. Rev. 88, 243 (1988)

    Article  Google Scholar 

  10. W. Jeitschko, P.C. Donohue, Acta Cryst. B 29, 783 (1973)

    Article  Google Scholar 

  11. C.H. Lee, H. Kito, H. Ihara, K. Akita, N. Yanase, C. Sekine, I. Shirotani, J. Cryst Growth 263, 358 (2004)

    Article  ADS  Google Scholar 

  12. W. Jeitschko, P.C. Donohue, Acta. Cryst. B 28, 1893 (1972)

    Article  Google Scholar 

  13. W. Wu, J.G. Cheng, K. Matsubayashi, P.P. Kong, F.K. Lin, C.Q. Jin, N.L. Wang, Y. Uwatoko, J.L. Luo, Nat. Commun. 5, 5508 (2014)

    Article  ADS  Google Scholar 

  14. W. Wu, K. Liu, Y.J. Li, Z.H. Yu, D.S. Wu, Y.T. Shao, S.H. Na, G. Li, R.Z. Huang, T. Xiang, J.L. Luo, Natl. Sci. Rev. 7, 21 (2020)

    Article  Google Scholar 

  15. D.S. Wu, J. Liao, W. Yi, X. Wang, P.G. Li, H.M. Weng, Y.G. Shi, Y.Q. Li, J.L. Luo, X. Dai, Z. Fang, Appl. Phys. Lett. 108, 042105 (2016)

  16. H.Y. Wang, H Su, J.Y. Zhang, W Xia, Y.S. Lin, X.L. Liu, X.F. Hou, Z.H. Yu, N. Yu, X. Wang, Z.Q. Zou, Y.H. Wang, Q.F. Liang, Y.H. Zhen, Y.F. Guo. Phys. Rev. B 100, 115127 (2019)

  17. M.Y. Yao, N. Xu, Q.S. Wu, G. Autès, N. Kumar, V.N. Strocov, N.C. Plumb, M. Radovic, O.V. Yazyev, C. Felser, J. Mesot, M. Shi, Phys. Rev. Lett. 122, 176402 (2019)

  18. T.T. Zhang, Y. Jiang, Z.D. Song, H. Huang, Y.Q. He, Z. Fang, H.M. Weng, C. Fang, Nature 566, 475 (2019)

    Article  ADS  Google Scholar 

  19. J. Rodríguez-Carvajal, Phys. B 192, 55 (1993)

    Article  ADS  Google Scholar 

  20. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  21. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  22. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  23. F.Y. Yang, K. Liu, K. Hong, D.H. Reich, P.C. Searson, C.L. Chien, Science 284, 1335 (1999)

    Article  ADS  Google Scholar 

  24. A.J. Funes, R.V. Coleman, Phys. Rev. 131, 2084 (1963)

    Article  ADS  Google Scholar 

  25. Z.M. Liao, H.C. Wu, S. Kumar, G.S. Duesberg, Y.B. Zhou, Graham L.W. Cross, I.V. Shvets, D.P. Yu. Adv. Mater. 24, 1862 (2012)

  26. Y.F. Zhao, H.W. Liu, J.Q. Yan, W. An, J. Liu, X. Zhang, H.C. Wang, Y. Liu, H. Jiang, Q. Li, Y. Wang, X.Z. Li, D. Mandrus, X.C. Xie, M.H. Pan, J. Wang, Phys. Rev. B 92, 041104(R) (2015)

    Article  ADS  Google Scholar 

  27. N. Gong, C.X. Deng, L.L. Wu, B. Wan, Z.B. Wang, Z.P. Li, H.Y. Gou, F.M. Gao, Inorg. Chem. 57, 9385 (2018)

    Article  Google Scholar 

  28. M.R. Khan, K. Bu, J.S. Chai, J.T. Wang, Sci. Rep.-UK 10, 11502 (2020)

    Article  Google Scholar 

  29. A. Brown, S. Rundqvist, Acta Crystallogr. 19, 684 (1965)

    Article  Google Scholar 

  30. F. Hulliger, E. Mooser, Prog. Solid State Chem. 2, 330 (1965)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the Major Research Plan of the National Natural Science Foundation of China (No. 92065201). W. Wu acknowledges National Key Research and Development of China (Grant Nos. 2017YFA0302901 and 2017YFA0302903), the National Natural Science Foundation of China (Grant Nos. 12134018, and 11921004), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100) Y. F. G. acknowledges the start-up grant of ShanghaiTech University and the Program for Professor of Special Appointment (Shanghai Eastern Scholar). M. Xu acknowledges the Fundamental Research Funds for the Central Universities, HUST (No. 2021GCRC051)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Wu or Z. H. Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Yu, Z.H., Xu, M. et al. Large magnetoresistance and unexpected low thermal conductivity in topological semimetal CrP4 single crystal. Appl. Phys. A 128, 196 (2022). https://doi.org/10.1007/s00339-022-05313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05313-6

Keywords

Navigation