Skip to main content
Log in

Crystal growth, characterization and third order nonlinear optical studies of N’-[(E)-(4-chlorophenyl)(phenyl)methylene]-4-methylbenzenesulfonohydrazide for optical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

N’-[(E)-(4Chlorophenyl)(phenyl)methylene]-4-methylbenzenesulfonohydrazide(4CBPTH) is synthesized by simple Schiff base condensation reaction and grown as a single crystal by slow evaporation solution growth method. 4CBPTH belong to P21/c centrosymmetric space group with monoclinic crystal system having lattice parameter a = 11.366(3) Å, b = 8.586(5) Å, c = 19.894(11) Å, α = 90°, β = 100.27(2)°, γ = 90° and volume = 1910.3(12) Å3. TG–DTA-DSC analysis exposes the melting and decomposition temperature of 4CBPTH as 154 °C and 289 °C, respectively. UV–Vis-NIR absorbance studies show 4CBPTH crystal possesses absorbance maxima in the UV region (319 nm) and minimal absorbance in visible and infrared region. Density functional theory (DFT) calculations reveal that the bandgap between HOMO and LUMO is 4.558 eV which reveals the strength of intermolecular hydrogen bonds between anion and cation of synthesized molecule. Intermolecular interactionand Molecular electrostatic potential Map (MEP) in 4CBPTH crystal is analysed by Hirshfeld surface and 2D fingerprint plots. Nonlinear optical properties were studied by Z-scan technique using two different laser source diode laser (785 nm, 50 mW) and Nd:YAG laser (532 nm, 10 Hz, 9 ns). Interestingly,4CBPTH exhibit saturable absorption under CW IR laser excitation and reverse saturable absorption under nano pulsed laser excitation. 4CBPTH exhibit two-photon absorption induced optical limiting behaviour with an onset optical limiting threshold of 8.5 × 1012 W/m2, which makes them suitable for laser safety devices against green nano pulsed laser excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Parthasarathy, R. Gopalakrishnan, J. Cryst. Growth 372, 100–104 (2013)

    Article  ADS  Google Scholar 

  2. G. Bhuvaneswari, L.G. Prasad, N. Prabavathi, Optik 166, 307–316 (2018)

    Article  ADS  Google Scholar 

  3. K. Sethuraman, R. Ramesh Babu, N. Vijayan, R. Gopalakrishnan, P. Ramasamy. J. Cryst. Growth 290(2), 539–543 (2006).

  4. M. Gulam Mohamed, K. Rajarajan, G. Mani, M. Vimalan, K. Prabha, J. Madhavan, P. Sagayaraj, J. Crystal Growth 300, 409 (2007).

  5. K. Sethuraman, R. Ramesh Babu, N. Vijayan, R. Gopalakrishnan, P. Ramasamy, J. Cryst. Growth 290, 539 (2006).

  6. G. Anandha Babu, P. Ramasamy, J. Cryst. Growth 310, 3561–3567 (2008).

  7. S.A. Khanum, V. Girish, S.S. Suparshwa, N.F. Khanum, Bioorg. Med. Chem. Lett. 19(7), 1887–1891 (2009)

    Article  Google Scholar 

  8. R.S. Moraes, R.E. Aderne, M. Cremona, N.A. Rey, Opt. Mater. 52, 186–191 (2016)

    Article  ADS  Google Scholar 

  9. S. Rodríguez-Hermida, A.B. Lago, R. Carballo, O. Fabelo, E.M. Vázquez-López, Chem. A Eur. J. 21(17), 6605–6616 (2015)

    Article  Google Scholar 

  10. J.R. Anacona, V. Rangel, M. Loroño, J. Camus, Spectrochim. Acta A 149, 23–29 (2015)

    Article  ADS  Google Scholar 

  11. K. Naseema, K.V. Sujith, K.B. Manjunatha, B. Kalluraya, G. Umesh, V. Rao, Opt. Laser Technol. 42(5), 741–748 (2010)

    Article  ADS  Google Scholar 

  12. S. Vijayakumar, A. Adhikari, B. Kalluraya, K.N. Sharafudeen, K. Chandrasekharan, J. Appl. Polym. Sci. 119(1), 595–601 (2011)

    Article  Google Scholar 

  13. J. Balaji, S. Prabu, J.J.F. Xavier, P. Srinivasan, Acta Cryst. E71, o45–o46 (2015)

    Google Scholar 

  14. N. Vijayan, R. Ramesh Babu, R. Gopalakrishnan, S. Dhanuskodi, P. Ramasamy, J. Cryst. Growth, 236(1–3), 407–412(2002).

  15. G. Socrates, Infrared characteristic group frequencies (John Wiley, New York, 2004)

    Google Scholar 

  16. K. Sathya, P. Dhamodharan, M. Dhandapani, Opt. Laser Technol. 101, 328–340 (2018)

    Article  ADS  Google Scholar 

  17. M. Karabacak, M. Kurt, M. Cinar, S. Ayyappan, S. Sudha, N. Sundaraganesan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 92, 365–376 (2012)

    Article  ADS  Google Scholar 

  18. E. Inkaya, M. Dinçer, E. Korkusuz, İ Yıldırım, O. Büyükgüngör, J. Mol. Struct. 1027, 133–139 (2012)

    Article  ADS  Google Scholar 

  19. R. Soman, S. Sujatha, D.S. Rojisha, V.C. Parameswaran, P. Varghese, B. Arunkumar, Eur. J. Inorg. Chem. 16, 2653–2662 (2014)

    Article  Google Scholar 

  20. A. Mark Spackman, D. Jayatilaka, CrystEngComm, 11(1), 19–32 (2009).

  21. M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17, University of Western Australia (2017)

  22. J.M.S. Gnanaraj, M.I. Pratheepa, M. Lawrence, Opt. Laser Technol. 107, 478–483 (2018)

    Article  ADS  Google Scholar 

  23. M. Divya Bharathi, R. Bhuvaneswari, J. Srividya, G. Vinitha, R.N. Prithiviraajan, G. Anbalagan, J. Phys. Chem. Solids, 113, 50–60(2018).

  24. P. Karuppasamy, M.S. Pandian, P. Ramasamy, S. Verma, Opt. Mater. 79, 152–171 (2018)

    Article  ADS  Google Scholar 

  25. D.F. Perepichka, M.R. Bryce, Angew. Chem. Int. Ed. 44, 5370–5373 (2005)

    Article  Google Scholar 

  26. K.C. Prathap, N.K. Lokanath, J. Mol. Struct. 1158, 26–38 (2018)

    Article  ADS  Google Scholar 

  27. C. Meganathan, S. Sebastian, M. Kurt, K.W. Lee, N. Sundaraganesan, J. Raman Spectrosc. 41(10), 1369–1378 (2010)

    Article  ADS  Google Scholar 

  28. D.A.N. Kleinman, Phys. Rev. 126, 1977–1979 (1962)

    Article  ADS  Google Scholar 

  29. S. Jeyaram, T. Geethakrishnan, Opt. Laser Technol. 89, 179–185 (2017)

    Article  ADS  Google Scholar 

  30. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quant. Elect., 26(4), 760-769(1990).

  31. S.J. Mathews, S.C. Kumar, L. Giribabu, S.V. Rao, Opt. Commun. 280(1), 206–212 (2007)

    Article  ADS  Google Scholar 

  32. T.C. Sabari Girisun, S. Dhanuskodi, Cryst. Res. Technol., 44, 1297–1302(2009).

  33. C. Indumathi, T.C. Sabari Girisun, K. Anitha, S. Alfred Cecil Raj, Opt. Mater., 60, 214–220(2016).

  34. C. Indumathi, T.C. Sabari Girisun, K. Anitha, G. Vinitha, S. Alfred Cecil Raj, J. Mol. Liq. 238, 89–95(2017).

  35. S. Anandan, S. Manoharan, N.K. Siji Narendran, T.C. Sabari Girisun, A.M. Asiri, Opt. Mater. 85, 18–25(2018).

Download references

Acknowledgements

The authors thank SAIF, IIT Madras for the measurement of X-ray diffraction analysis, FTIR and NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Balaji.

Ethics declarations

Conflict of interest

There is no conflict between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecily Maria Sneha, X., Gajalakshmi, D., Ram Sri Nivas, P.M. et al. Crystal growth, characterization and third order nonlinear optical studies of N’-[(E)-(4-chlorophenyl)(phenyl)methylene]-4-methylbenzenesulfonohydrazide for optical applications. Appl. Phys. A 128, 104 (2022). https://doi.org/10.1007/s00339-022-05258-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05258-w

Keywords

Navigation