Skip to main content

Advertisement

Log in

A review on preparation and characterization of silver/nickel oxide nanostructures and their applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 24 November 2021

This article has been updated

Abstract

Nickel oxide and silver oxide nanoparticles have wonderful properties that could be employed in numerous applications. Thus, synthesis of nickel silver oxide nanostructures with different characteristics is of great interest. In this review, many synthesis methods were reported such as: electrodeposition, electrochemical method, simple immersion process and subsequent RF-sputtering deposition, chemical oxidative polymerization, followed by acidic sol–gel process, flame-based process, liquid-phase reduction technique, sol–gel, hydrothermal method, co-precipitation method, simple precipitation method, thermal decomposition, chemical wet synthesis, low and high-temperature reduction, high-pressure autoclave, thermal treatment method, and laser-liquid–solid interaction technique. Reporting all methods employed for the fabrication of NiO and Ag2O nanostructures is useful to produce and develop novel nanomaterials with enhanced properties and applications. Studying the factors that tuned their properties: particle size, shape, and capping agents as well as solution pH is highly recommended in future works. Also, further research studies should be conducted for finding another/other facile and effective synthesis method/methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25, 1–15 (2020). https://doi.org/10.3390/molecules25010112

    Article  Google Scholar 

  2. R. Landauer, Information Is Inevitably Physical, Feynman Computation (CRC Press, 2018), pp. 77–92. https://doi.org/10.1201/9780429500459

    Book  Google Scholar 

  3. A.R. Wu, L. Yu, There’s plenty of room at the bottom of a cell. Chem. Eng. Prog. 113(10), 47–51 (2017)

    Google Scholar 

  4. P.I. Dolez, Nanomaterials Definitions, Classifications, and Applications (Elsevier, 2015). https://doi.org/10.1016/B978-0-444-62747-6.00001-4

    Book  Google Scholar 

  5. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  6. J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57, 724–803 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.003

    Article  Google Scholar 

  7. A.A. Alswata, M.B. Ahmad, N.M. Al-Hada, H.M. Kamari, M.Z.B. Hussein, N.A. Ibrahim, Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water. Results Phys. 7, 723–731 (2017). https://doi.org/10.1016/j.rinp.2017.01.036

    Article  ADS  Google Scholar 

  8. E. Absi, M.A. Saleh, N.M. Al-Hada, K. Hamzah, A.M. Alhawsawi, E.M. Banoqitah, Binary nickel and silver oxides by thermal route: preparation and characterization. Appl. Phys. A Mater. Sci. Process. 127, 1–11 (2021). https://doi.org/10.1007/s00339-021-04775-4

    Article  Google Scholar 

  9. N.M. Al-Hada, A.M. Al-Ghaili, H. Kasim, M.A. Saleh, H. Baqiah, J. Liu, J. Wang, Nanofabrication of (Cr2O3)x (NiO)1–x and the impact of precursor concentrations on nanoparticles conduct. J. Mater. Res. Technol. 11, 252–263 (2021). https://doi.org/10.1016/j.jmrt.2021.01.007

    Article  Google Scholar 

  10. A.A. Baqer, K.A. Matori, N.M. Al-Hada, A.H. Shaari, H.M. Kamari, E. Saion, J.L.Y. Chyi, C.A.C. Abdullah, Synthesis and characterization of binary (CuO)0.6(CeO2)0.4 nanoparticles via a simple heat treatment method. Results Phys. 9, 471–478 (2018). https://doi.org/10.1016/j.rinp.2018.02.079

    Article  ADS  Google Scholar 

  11. N.M. Al-Hada, E. Saion, H.M. Kamari, M.H. Flaifel, A.H. Shaari, Z.A. Talib, N. Abdullahi, A.A. Baqer, A. Kharazmi, Structural, morphological and optical behaviour of PVP capped binary (ZnO)0.4 (CdO)0.6 nanoparticles synthesised by a facile thermal route. Mater. Sci. Semicond. Process. 53, 56–65 (2016). https://doi.org/10.1016/j.mssp.2016.06.004

    Article  Google Scholar 

  12. N.M. Al-Hada, E.B. Saion, A.H. Shaari, M.A. Kamarudin, M.H. Flaifel, S.H. Ahmad, S.A. Gene, A facile thermal-treatment route to synthesize ZnO nanosheets and effect of calcination temperature. PLoS ONE 9, 2–10 (2014). https://doi.org/10.1371/journal.pone.0103134

    Article  Google Scholar 

  13. N.M. Al-Hada, R.M. Kasmani, H. Kasim, A.M. Al-Ghaili, M.A. Saleh, E.M. Banoqitah, A.M. Alhawsawi, A.A. Baqer, J. Liu, S. Xu, Q. Li, A.M. Noorazlan, A.A.A. Ahmed, M.H. Flaifel, S. Paiman, N. Nazrin, B.A. Al-Asbahi, J. Wang, The effect of precursor concentration on the particle size, crystal size, and optical energy gap of CexSn1−xO2 nanofabrication. Nanomaterials 11, 2143 (2021). https://doi.org/10.3390/nano11082143

    Article  Google Scholar 

  14. J. Chaudhary, G. Tailor, B.L. Yadav, O. Michael, Synthesis and biological function of nickel and copper nanoparticles. Heliyon 5, e01878 (2019). https://doi.org/10.1016/j.heliyon.2019.e01878

    Article  Google Scholar 

  15. M.I. Alkhalaf, R.H. Hussein, A. Hamza, Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects, Saudi. J. Biol. Sci. 27, 2410–2419 (2020). https://doi.org/10.1016/j.sjbs.2020.05.005

    Article  Google Scholar 

  16. R. Thiruchelvi, P. Jayashree, K. Mirunaalini, Synthesis of silver nanoparticle using marine red seaweed Gelidiella acerosa-a complete study on its biological activity and its characterisation. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.07.242

    Article  Google Scholar 

  17. S. Dangi, A. Gupta, D.K. Gupta, S. Singh, N. Parajuli, Green synthesis of silver nanoparticles using aqueous root extract of Berberis asiatica and evaluation of their antibacterial activity. Chem. Data Collect. (2020). https://doi.org/10.1016/j.cdc.2020.100411

    Article  Google Scholar 

  18. D. Jini, S. Sharmila, Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Mater. Today Proc. 22, 432–438 (2020). https://doi.org/10.1016/j.matpr.2019.07.672

    Article  Google Scholar 

  19. P. Tamilarasi, P. Meena, Green synthesis of silver nanoparticles (Ag NPs) using Gomphrena globosa (Globe amaranth) leaf extract and their characterization. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.04.025

    Article  Google Scholar 

  20. A. Lunkov, B. Shagdarova, M. Konovalova, Y. Zhuikova, N. Drozd, A. Il’ina, V. Varlamov, Synthesis of silver nanoparticles using gallic acid-conjugated chitosan derivatives. Carbohydr. Polym. 234, 115916 (2020). https://doi.org/10.1016/j.carbpol.2020.115916

    Article  Google Scholar 

  21. L. Sherin, A. Sohail, U.E.S. Amjad, M. Mustafa, R. Jabeen, A. Ul-Hamid, Facile green synthesis of silver nanoparticles using terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Coll. Interf. Sci. Commun. 37, 100276 (2020). https://doi.org/10.1016/j.colcom.2020.100276

    Article  Google Scholar 

  22. S. Sawan, R. Maalouf, A. Errachid, N. Jaffrezic-Renault, Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: a review. TrAC Trends Anal. Chem. 131, 116014 (2020). https://doi.org/10.1016/j.trac.2020.116014

    Article  Google Scholar 

  23. S.M. Hosseinpour-Mashkani, M. Ramezani, Silver and silver oxide nanoparticles: synthesis and characterization by thermal decomposition. Mater. Lett. 130, 259–262 (2014). https://doi.org/10.1016/j.matlet.2014.05.133

    Article  Google Scholar 

  24. H. Chen, J. Wang, D. Huang, X. Chen, J. Zhu, D. Sun, J. Huang, Q. Li, Plant-mediated synthesis of size-controllable Ni nanoparticles with alfalfa extract. Mater. Lett. 122, 166–169 (2014). https://doi.org/10.1016/j.matlet.2014.02.028

    Article  Google Scholar 

  25. M.I. Din, A.G. Nabi, A. Rani, A. Aihetasham, M. Mukhtar, Single step green synthesis of stable nickel and nickel oxide nanoparticles from calotropis gigantea: catalytic and antimicrobial potentials. Environ. Nanotechnol. Monit. Manag. 9, 29–36 (2018). https://doi.org/10.1016/j.enmm.2017.11.005

    Article  Google Scholar 

  26. C. Zeng, C. Wang, F. Wang, Y. Zhang, L. Zhang, A novel vapor-liquid segmented flow based on solvent partial vaporization in microstructured reactor for continuous synthesis of nickel nanoparticles. Chem. Eng. J. 204–205, 48–53 (2012). https://doi.org/10.1016/j.cej.2012.07.096

    Article  Google Scholar 

  27. L. Xu, C. Srinivasakannan, J. Peng, D. Zhang, G. Chen, Synthesis of nickel nanoparticles by aqueous reduction in continuous flow microreactor. Chem. Eng. Process. Process Intensif. 93, 44–49 (2015). https://doi.org/10.1016/j.cep.2015.04.010

    Article  Google Scholar 

  28. Z.G. Wu, M. Munoz, O. Montero, The synthesis of nickel nanoparticles by hydrazine reduction. Adv. Powder Technol. 21, 165–168 (2010). https://doi.org/10.1016/j.apt.2009.10.012

    Article  Google Scholar 

  29. S. Chemchoub, L. Oularbi, A. El Attar, S.A. Younssi, F. Bentiss, C. Jama, M. El Rhazi, Cost-effective non-noble metal supported on conducting polymer composite such as nickel nanoparticles/polypyrrole as efficient anode electrocatalyst for ethanol oxidation. Mater. Chem. Phys. 250, 123009 (2020). https://doi.org/10.1016/j.matchemphys.2020.123009

    Article  Google Scholar 

  30. M.S. Alnarabiji, O. Tantawi, A. Ramli, N.A.M. Zabidi, O.B. Ghanem, B. Abdullah, Comprehensive review of structured binary Ni-NiO catalyst: synthesis, characterization and applications. Renew. Sustain. Energy Rev. 114, 109326 (2019). https://doi.org/10.1016/j.rser.2019.109326

    Article  Google Scholar 

  31. M. Tadic, D. Nikolic, M. Panjan, G.R. Blake, Magnetic properties of NiO (nickel oxide) nanoparticles: blocking temperature and neel temperature. J. Alloys Compd. 647, 1061–1068 (2015). https://doi.org/10.1016/j.jallcom.2015.06.027

    Article  Google Scholar 

  32. K. Deevi, V.S.R. Immareddy, Synthesis and characterization of optically transparent nickel oxide nanoparticles as a hole transport material for hybrid perovskite solar cells. J. Mater. Sci. Mater. Electron. 30, 6242–6248 (2019). https://doi.org/10.1007/s10854-019-00927-8

    Article  Google Scholar 

  33. J.S. Fain, J.W. Mares, S.M. Weiss, Size-controlled nickel oxide nanoparticle synthesis using mesoporous silicon thin films. J. Nanoparticle Res. (2015). https://doi.org/10.1007/s11051-015-3122-2

    Article  Google Scholar 

  34. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U.U. De Gomes, M. Maaza, Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram. Int. 42, 8385–8394 (2016). https://doi.org/10.1016/j.ceramint.2016.02.054

    Article  Google Scholar 

  35. Adiba, V. Pandey, S. Munjal, T. Ahmad, Structural, morphological and magnetic properties of antiferromagnetic nickel oxide nanoparticles synthesized via sol-gel route. Mater. Today Proc. 26, 3116–3118 (2019). https://doi.org/10.1016/j.matpr.2020.02.643

    Article  Google Scholar 

  36. L. Williams, A.R. Prasad, P. Sowmya, A. Joseph, Characterization and temperature dependent DC conductivity study of bio templated nickel oxide nanoparticles (NiO) and their composites using polyaniline (PANI). Mater. Chem. Phys. 242, 122469 (2020). https://doi.org/10.1016/j.matchemphys.2019.122469

    Article  Google Scholar 

  37. J. Singh, S. Lee, S. Kim, S.P. Singh, J. Kim, A.K. Rai, Fabrication of 1D mesoporous NiO nano-rods as high capacity and long-life anode material for lithium ion batteries. J. Alloys Compd. 850, 156755 (2021). https://doi.org/10.1016/j.jallcom.2020.156755

    Article  Google Scholar 

  38. V.E. Gurenko, V.I. Popkov, A.A. Lobinsky, Synthesis of NiO granular nanospheres as a novel material for high-performance supercapacitors. Mater. Lett. 279, 128478 (2020). https://doi.org/10.1016/j.matlet.2020.128478

    Article  Google Scholar 

  39. M. Hashem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, Z.A. Talib, S.B. Paiman, M.A. Kamarudeen, Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results Phys. 6, 1024–1030 (2016). https://doi.org/10.1016/j.rinp.2016.11.031

    Article  ADS  Google Scholar 

  40. M.Z. Nakhjiri, S. Asadi, A. Hasan, M.M.N. Babadaei, Y. Vahdani, B. Rasti, M. Ale-Ebrahim, N. Arsalan, S.V.M. Goorabjavari, S. Haghighat, M. Sharifi, K. Shahpasand, K. Akhtari, M. Falahati, Exploring the interaction of synthesized nickel oxide nanoparticles through hydrothermal method with hemoglobin and lymphocytes: bio-thermodynamic and cellular studies. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.113893

    Article  Google Scholar 

  41. Z. Fereshteh, M. Salavati-Niasari, K. Saberyan, S.M. Hosseinpour-Mashkani, F. Tavakoli, Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor. J. Clust. Sci. 23, 577–583 (2012). https://doi.org/10.1007/s10876-012-0477-8

    Article  Google Scholar 

  42. A.D. Khalaji, M. Jarosova, P. Machek, K. Chen, D. Xue, Facile synthesis, characterization and electrochemical performance of nickel oxide nanoparticles prepared by thermal decomposition. Scr. Mater. 181, 53–57 (2020). https://doi.org/10.1016/j.scriptamat.2020.02.015

    Article  Google Scholar 

  43. A.M. Abdallah, H. Basma, R. Awad, Preparation, characterization, and application of nickel oxide nanoparticles in glucose and lactose biosensors. Mod. Appl. Sci. 13, 99 (2019). https://doi.org/10.5539/mas.v13n6p99

    Article  Google Scholar 

  44. R. Goel, R. Jha, C. Ravikant, Investigating the structural, electrochemical, and optical properties of p-type spherical nickel oxide (NiO) nanoparticles. J. Phys. Chem. Solids. 144, 109488 (2020). https://doi.org/10.1016/j.jpcs.2020.109488

    Article  Google Scholar 

  45. G.T. Anand, R. Nithiyavathi, R. Ramesh, S.J. Sundaram, K. Kaviyarasu, Structural and optical properties of nickel oxide nanoparticles: investigation of antimicrobial applications. Surf. Interf. 18, 100460 (2020). https://doi.org/10.1016/j.surfin.2020.100460

    Article  Google Scholar 

  46. H. Baksh, J.A. Buledi, N.H. Khand, A.R. Solangi, A. Mallah, S.T. Sherazi, M.I. Abro, Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid. Monatsh. Chemie. 151, 1689–1696 (2020). https://doi.org/10.1007/s00706-020-02704-4

    Article  Google Scholar 

  47. M. Maruthupandy, G.N. Rajivgandhi, F. Quero, W.J. Li, Anti-quorum sensing and anti-biofilm activity of nickel oxide nanoparticles against pseudomonas aeruginosa. J. Environ. Chem. Eng. 8, 104533 (2020). https://doi.org/10.1016/j.jece.2020.104533

    Article  Google Scholar 

  48. R. Ahmad, T. Bedük, S.M. Majhi, K.N. Salama, One-step synthesis and decoration of nickel oxide nanosheets with gold nanoparticles by reduction method for hydrazine sensing application. Sens. Actuators B Chem. 286, 139–147 (2019). https://doi.org/10.1016/j.snb.2019.01.132

    Article  Google Scholar 

  49. T.N.J.I. Edison, R. Atchudan, Y.R. Lee, Binder-free electro-synthesis of highly ordered nickel oxide nanoparticles and its electrochemical performance. Electrochim. Acta. 283, 1609–1617 (2018). https://doi.org/10.1016/j.electacta.2018.07.101

    Article  Google Scholar 

  50. F.F. Bobinihi, O.E. Fayemi, D.C. Onwudiwe, Synthesis, characterization, and cyclic voltammetry of nickel sulphide and nickel oxide nanoparticles obtained from Ni(II) dithiocarbamate. Mater. Sci. Semicond. Process. 121, 105315 (2021). https://doi.org/10.1016/j.mssp.2020.105315

    Article  Google Scholar 

  51. V.P.M. Shajudheen, M. Sivakumar, S.S. Kumar, Synthesis and characterization of NiO nanoparticles by thermal oxidation of nickel sulfide nanoparticles. Mater. Today Proc. 3, 2450–2456 (2016). https://doi.org/10.1016/j.matpr.2016.04.161

    Article  Google Scholar 

  52. A.V. Ushakov, I.V. Karpov, L.Y. Fedorov, V.G. Demin, E.A. Goncharova, A.A. Shaihadinov, G.M. Zeer, S.M. Zharkov, The effect of microstructural features on the ferromagnetism of nickel oxide nanoparticles synthesized in a low-pressure arc plasma. Phys. E Low-Dimens. Syst. Nanostructures. 124, 114352 (2020). https://doi.org/10.1016/j.physe.2020.114352

    Article  Google Scholar 

  53. B. Ebin, Simple preparation of Ni and NiO nanoparticles using raffinate solution originated from spent NiMH battery recycling. J. Inorg. Organomet. Polym. Mater. 28, 2554–2563 (2018). https://doi.org/10.1007/s10904-018-0926-4

    Article  Google Scholar 

  54. F.T. Thema, E. Manikandan, A. Gurib-Fakim, M. Maaza, Single phase bunsenite NiO nanoparticles green synthesis by agathosma betulina natural extract. J. Alloys Compd. 657, 655–661 (2016). https://doi.org/10.1016/j.jallcom.2015.09.227

    Article  Google Scholar 

  55. T. Zahra, K.S. Ahmad, Structural, optical and electrochemical studies of organo-templated wet synthesis of cubic shaped nickel oxide nanoparticles. Optik (Stuttg). 205, 164241 (2020). https://doi.org/10.1016/j.ijleo.2020.164241

    Article  ADS  Google Scholar 

  56. A.A. Olajire, A.A. Mohammed, Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films. Adv. Powder Technol. 31, 211–218 (2020). https://doi.org/10.1016/j.apt.2019.10.012

    Article  Google Scholar 

  57. P. Karpagavinayagam, A.E.P. Prasanna, C. Vedhi, Eco-friendly synthesis of nickel oxide nanoparticles using avicennia marina leaf extract: morphological characterization and electrochemical application. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.04.183

    Article  Google Scholar 

  58. A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, X. Zhang, L.J. Kennedy, Green synthesis of nickel oxide nanoparticles using solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies. Surf. Interf. 20, 100553 (2020). https://doi.org/10.1016/j.surfin.2020.100553

    Article  Google Scholar 

  59. A. Lawrence, C. Hariharan, A.N. Prabu, B. Janarthanan, Materials today: proceedings influence of nickel oxide nanoparticles on the absorption enhancement of solar radiation for effective distillation by single slope wick-type solar still. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.10.704

    Article  Google Scholar 

  60. A.C. Nwanya, M.M. Ndipingwi, C.O. Ikpo, R.M. Obodo, S.C. Nwanya, S. Botha, F.I. Ezema, E.I. Iwuoha, M. Maaza, Zea mays lea silk extract mediated synthesis of nickel oxide nanoparticles as positive electrode material for asymmetric supercabattery. J. Alloys Compd. 822, 153581 (2020). https://doi.org/10.1016/j.jallcom.2019.153581

    Article  Google Scholar 

  61. S. Ghazal, A. Akbari, H.A. Hosseini, Z. Sabouri, F. Forouzanfar, M. Khatami, M. Darroudi, Sol-gel biosynthesis of nickel oxide nanoparticles using cydonia oblonga extract and evaluation of their cytotoxicity and photocatalytic activities. J. Mol. Struct. 1217, 128378 (2020). https://doi.org/10.1016/j.molstruc.2020.128378

    Article  Google Scholar 

  62. K. Lingaraju, H.R. Naika, H. Nagabhushana, K. Jayanna, S. Devaraja, G. Nagaraju, Biosynthesis of nickel oxide nanoparticles from Euphorbia heterophylla (L.) and their biological application. Arab. J. Chem. 13, 4712–4719 (2020). https://doi.org/10.1016/j.arabjc.2019.11.003

    Article  Google Scholar 

  63. R. Ramalingam, M.H.U.T. Fazil, N.K. Verma, K.D. Arunachalam, Green synthesis, characterization and antibacterial evaluation of electrospun nickel oxide nanofibers. Mater. Lett. 256, 126616 (2019). https://doi.org/10.1016/j.matlet.2019.126616

    Article  Google Scholar 

  64. S. Iqbal, M. Fakhar-e-alam, F. Akbar, M. Sha, M. Atif, N. Amin, M. Ismail, A. Hanif, W.A. Farooq, Application of silver oxide nanoparticles for the treatment of cancer. J. Mol. Struct 1189, 203–209 (2019). https://doi.org/10.1016/j.molstruc.2019.04.041

    Article  ADS  Google Scholar 

  65. N.L. Yong, A. Ahmad, A.W. Mohammad, Synthesis and characterization of silver oxide nanoparticles by a novel method. Int. J. Sci Eng. Res 4, 155–158 (2013)

    Google Scholar 

  66. M.M. Rahman, S.B. Khan, A. Jamal, M. Faisal, A.M. Asiri, Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method. Microchim. Acta (2012). https://doi.org/10.1007/s00604-012-0817-2

    Article  Google Scholar 

  67. M.R.H. Siddiqui, S.F. Adil, M.E. Assal, R. Ali, A. Al-Warthan, Synthesis and characterization of silver oxide and silver chloride nanoparticles with high thermal stability. Asian J. Chem. 25, 3405–3409 (2013). https://doi.org/10.14233/ajchem.2013.13874

    Article  Google Scholar 

  68. S.P. Vinay, Udayabhanu, G. Nagaraju, C.P. Chandrappa, N. Chandrasekhar, Novel Gomutra (cow urine) mediated synthesis of silver oxide nanoparticles and their enhanced photocatalytic, photoluminescence and antibacterial studies. J. Sci. Adv. Mater. Devices 4, 392–399 (2019). https://doi.org/10.1016/j.jsamd.2019.08.004

    Article  Google Scholar 

  69. J. Fowsiya, G. Madhumitha, Biomolecules derived from carissa edulis for the microwave assisted synthesis of Ag2O nanoparticles: a study against S. incertulas, C. medinalis and S. mauritia. J. Clust. Sci. 30, 1243–1252 (2019). https://doi.org/10.1007/s10876-019-01627-3

    Article  Google Scholar 

  70. S. Haq, K.A. Yasin, W. Rehman, M. Waseem, M.N. Ahmed, M.I. Shahzad, N. Shahzad, A. Shah, M.U. Rehman, B. Khan, Green synthesis of silver oxide nanostructures and investigation of their synergistic effect with moxifloxacin against selected microorganisms. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01763-8

    Article  Google Scholar 

  71. R. Li, Z. Chen, N. Ren, Y. Wang, Y. Wang, F. Yu, Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care. J. Photochem. Photobiol. B Biol. 199, 111593 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111593

    Article  Google Scholar 

  72. G. Maheshwaran, A.N. Bharathi, M.M. Selvi, M.K. Kumar, R.M. Kumar, S. Sudhahar, Green synthesis of silver oxide nanoparticles using Zephyranthes Rosea flower extract and evaluation of biological activities. J. Environ. Chem. Eng. 8, 104137 (2020). https://doi.org/10.1016/j.jece.2020.104137

    Article  Google Scholar 

  73. V. Manikandan, P. Velmurugan, J.P.W. Chang, Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech 7, 1–9 (2017). https://doi.org/10.1007/s13205-017-0670-4

    Article  Google Scholar 

  74. B.N. Rashmi, S.F. Harlapur, B. Avinash, C.R. Ravikumar, H.P. Nagaswarupa, M.R.A. Kumar, K. Gurushantha, M.S. Santosh, Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies. Inorg. Chem. Commun. 111, 107580 (2020). https://doi.org/10.1016/j.inoche.2019.107580

    Article  Google Scholar 

  75. Z.H. Dhoondia, H. Chakraborty, Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater. Nanotechnol. (2012). https://doi.org/10.5772/55741

    Article  Google Scholar 

  76. S.N. Archana, R. Sharma, Srivastava, silver oxide nanoparticles synthesized by green method from artocarpus Hetrophyllus for antibacterial and antimicrobial applications. Mater. Today Proc. 28, 332–336 (2020). https://doi.org/10.1016/j.matpr.2020.02.233

    Article  Google Scholar 

  77. G. Pradheesh, S. Suresh, J. Suresh, V. Alexramani, Antimicrobial and anticancer activity studies on green synthesized silver oxide nanoparticles from the medicinal plant cyathea nilgiriensis holttum. Int. J. Pharm. Investig. 10, 146–150 (2020). https://doi.org/10.5530/ijpi.2020.2.27

    Article  Google Scholar 

  78. M. Aghazadeh, Synthesis, characterization, and study of the supercapacitive performance of NiO nanoplates prepared by the cathodic electrochemical deposition-heat treatment (CED-HT) method. J. Mater. Sci. Mater. Electron. 28, 3108–3117 (2017). https://doi.org/10.1007/s10854-016-5899-x

    Article  Google Scholar 

  79. M. Tulinski, M. Jurczyk, Nanomaterials synthesis methods. Metrol. Stand. Nanotechnol. (2017). https://doi.org/10.1002/9783527800308.ch4

    Article  Google Scholar 

  80. L.A. Kolahalam, I.V.K. Viswanath, B.S. Diwakar, B. Govindh, V. Reddy, Y.L.N. Murthy, Review on nanomaterials: synthesis and applications. Mater. Today Proc. 18, 2182–2190 (2019). https://doi.org/10.1016/j.matpr.2019.07.371

    Article  Google Scholar 

  81. S.M. Bhagyaraj, O.S. Oluwafemi, Nanotechnology: The Science of the Invisible (Elsevier Ltd, 2018). https://doi.org/10.1016/b978-0-08-101975-7.00001-4

    Book  Google Scholar 

  82. S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011). https://doi.org/10.1039/c1gc15386b

    Article  Google Scholar 

  83. R. Singaravelan, S.B.S. Alwar, Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles. Appl. Nanosci. 5, 983–991 (2015). https://doi.org/10.1007/s13204-014-0396-0

    Article  ADS  Google Scholar 

  84. Y. Zhang, L.Z. Xie, C.X. Yuan, C.L. Zhang, S. Liu, Y.Q. Peng, H.R. Li, M. Zhang, Preparation of 3D rose-like nickel oxide nanoparticles by electrodeposition method and application in gas sensors. J. Mater. Sci. Mater. Electron 27, 1817–1827 (2016). https://doi.org/10.1007/s10854-015-3959-2

    Article  Google Scholar 

  85. Q. Wang, J. Zheng, Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination. Microchim. Acta. 169, 361–365 (2010). https://doi.org/10.1007/s00604-010-0356-7

    Article  Google Scholar 

  86. N. Huang, H. Lim, C. Chia, M. Yarmo, M. Muhamad, Simple room-temperature preparation of high-yield large-area graphene oxide. Int. J. Nanomed. 6, 3443–3448 (2011). https://doi.org/10.1021/j100561a010

    Article  Google Scholar 

  87. A.M. Golsheikh, N.M. Huang, H.N. Lim, R. Zakaria, C.Y. Yin, One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon N. Y. 62, 405–412 (2013). https://doi.org/10.1016/j.carbon.2013.06.025

    Article  Google Scholar 

  88. H. Guo, H. Jin, R. Gui, Z. Wang, J. Xia, F. Zhang, Electrodeposition one-step preparation of silver nanoparticles/carbon dots/reduced graphene oxide ternary dendritic nanocomposites for sensitive detection of doxorubicin. Sens. Actuators B Chem. 253, 50–57 (2017). https://doi.org/10.1016/j.snb.2017.06.095

    Article  Google Scholar 

  89. M. Usman, L. Pan, A. Farid, A.S. Khan, Z. Yongpeng, M.A. Khan, M. Hashim, Carbon nanocoils-nickel foam decorated with silver nanoparticles/sheets using a novel stirring assisted electrodeposition technique for non-enzymatic glucose sensor. Carbon N. Y. 157, 761–766 (2020). https://doi.org/10.1016/j.carbon.2019.10.069

    Article  Google Scholar 

  90. W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin, Nanostructured silver catalyzed nickel foam cathode for an aluminum-hydrogen peroxide fuel cell. J. Pow. Sour. 160, 1420–1424 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.015

    Article  Google Scholar 

  91. R. Yuksel, S. Coskun, Y.E. Kalay, H.E. Unalan, Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors. J. Pow. Sour. 328, 167–173 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.008

    Article  Google Scholar 

  92. W. Zhao, N. Du, H. Zhang, D. Yang, Silver-nickel oxide core-shell nanoflower arrays as high-performance anode for lithium-ion batteries. J. Pow. Sour. 285, 131–136 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.088

    Article  Google Scholar 

  93. W. Zhao, N. Du, H. Zhang, D. Yang, Silver-nickel oxide core-shell nanoparticle array electrode with enhanced lithium-storage performance. Electrochim. Acta. 174, 893–899 (2015). https://doi.org/10.1016/j.electacta.2015.04.156

    Article  Google Scholar 

  94. A.M. El-Nahrawy, A.B.A. Hammad, T.A. Khattab, A. Haroun, S. Kamel, Development of electrically conductive nanocomposites from cellulose nanowhiskers, polypyrrole and silver nanoparticles assisted with nickel(III) oxide nanoparticles. React. Funct. Polym. (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104533

    Article  Google Scholar 

  95. M.M. Mohammadi, S.S. Gunturi, S. Shao, S. Konda, R.D. Buchner, M.T. Swihart, Flame-synthesized nickel-silver nanoparticle inks provide high conductivity without sintering. Chem. Eng. J. 372, 648–655 (2019). https://doi.org/10.1016/j.cej.2019.04.141

    Article  Google Scholar 

  96. M.M. Mohammadi, S. Shao, S.S. Gunturi, A.R. Raghavan, N. Alexander, Y. Liu, C.M. Stafford, R.D. Buchner, M.T. Swihart, A general approach to multicomponent metal-decorated crumpled reduced graphene oxide nanocomposites using a flame-based process. Nanoscale 11, 19571–19578 (2019). https://doi.org/10.1039/c9nr05792g

    Article  Google Scholar 

  97. M.K. Sharma, D. Qi, R.D. Buchner, W.J. Scharmach, V. Papavassiliou, M.T. Swihart, Flame-driven aerosol synthesis of copper-nickel nanopowders and conductive nanoparticle films. ACS Appl. Mater. Interf. 6, 13542–13551 (2014). https://doi.org/10.1021/am5026853

    Article  Google Scholar 

  98. W.J. Scharmach, R.D. Buchner, V. Papavassiliou, P. Pacouloute, M.T. Swihart, A high-temperature reducing jet reactor for flame-based metal nanoparticle production. Aerosol Sci. Technol. 44, 1083–1088 (2010). https://doi.org/10.1080/02786826.2010.511320

    Article  ADS  Google Scholar 

  99. J.J. Jing, J. Xie, G.Y. Chen, W.H. Li, M.M. Zhang, Preparation of nickel–silver core–shell nanoparticles by liquid-phase reduction for use in conductive paste. J. Exp. Nanosci. 10, 1347–1356 (2015). https://doi.org/10.1080/17458080.2015.1012751

    Article  Google Scholar 

  100. D. Fujioka, S. Ikeda, K. Akamatsu, H. Nawafune, K. Kojima, Preparation of Ni nanoparticles by liquid-phase reduction to fabricate metal nanoparticle-polyimide composite films. RSC Adv. 9, 6438–6443 (2019). https://doi.org/10.1039/c9ra00182d

    Article  ADS  Google Scholar 

  101. M.Z. Iqbal, R.J. Kriek, Silver/nickel oxide (Ag/NiO) nanocomposites produced via a citrate sol-gel route as electrocatalyst for the oxygen evolution reaction (OER) in alkaline medium. Electrocatalysis 9, 279–286 (2018). https://doi.org/10.1007/s12678-018-0455-5

    Article  Google Scholar 

  102. S. Ghazal, A. Akbari, H.A. Hosseini, Z. Sabouri, F. Forouzanfar, M. Khatami, M. Darroudi, Biosynthesis of silver-doped nickel oxide nanoparticles and evaluation of their photocatalytic and cytotoxicity properties. Appl. Phys. A Mater. Sci. Process. 126, 1–8 (2020). https://doi.org/10.1007/s00339-020-03664-6

    Article  Google Scholar 

  103. S. Maharjan, K.S. Liao, A.J. Wang, Z. Zhu, B.P. McElhenny, J. Bao, S.A. Curran, Sol-gel synthesis of stabilized silver nanoparticles in an organosiloxane matrix and its optical nonlinearity. Chem. Phys. 532, 110610 (2020). https://doi.org/10.1016/j.chemphys.2019.110610

    Article  Google Scholar 

  104. M. Shahjahan, Synthesis and characterization of silver nanoparticles by sol-gel technique. Nanosci. Nanometrology 3, 34 (2017). https://doi.org/10.11648/j.nsnm.20170301.16

    Article  Google Scholar 

  105. N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Synthesis of NiO nanoparticles through sol-gel method. Procedia Chem. 19, 626–631 (2016). https://doi.org/10.1016/j.proche.2016.03.062

    Article  Google Scholar 

  106. M. Alagiri, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiO nanoparticles by sol-gel method. J. Mater. Sci. Mater. Electron. 23, 728–732 (2012). https://doi.org/10.1007/s10854-011-0479-6

    Article  Google Scholar 

  107. V.A. Alexandrova, L.N. Shirokova, V.S. Sadykova, A.E. Baranchikov, Antimicrobial activity of silver nanoparticles in a carboxymethyl chitin matrix obtained by the microwave hydrothermal method. Appl. Biochem. Microbiol. 54, 496–500 (2018). https://doi.org/10.1134/S0003683818050046

    Article  Google Scholar 

  108. M. Bonomo, Synthesis and characterization of NiO nanostructures: a review. J. Nanoparticle Res. (2018). https://doi.org/10.1007/s11051-018-4327-y

    Article  Google Scholar 

  109. S. Nagamuthu, K.S. Ryu, Synthesis of Ag/NiO honeycomb structured nanoarrays as the electrode material for high performance asymmetric supercapacitor devices. Sci. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-019-41446-0

    Article  Google Scholar 

  110. I. Ocsoy, A. Demirbas, E.S. McLamore, B. Altinsoy, N. Ildiz, A. Baldemir, Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens. J. Mol. Liq. 238, 263–269 (2017). https://doi.org/10.1016/j.molliq.2017.05.012

    Article  Google Scholar 

  111. Y.F. Li, W.P. Gan, J. Zhou, Z.Q. Lu, C. Yang, T.T. Ge, Hydrothermal synthesis of silver nanoparticles in Arabic gum aqueous solutions. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 25, 2081–2086 (2015). https://doi.org/10.1016/S1003-6326(15)63818-3

    Article  Google Scholar 

  112. A. Bouremana, A. Guittoum, M. Hemmous, D. Martínez-Blanco, P. Gorria, J.A. Blanco, N. Benrekaa, Microstructure, morphology and magnetic properties of Ni nanoparticles synthesized by hydrothermal method. Mater. Chem. Phys. 160, 435–439 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.015

    Article  Google Scholar 

  113. G. Jayakumar, A.A. Irudayaraj, A.D. Raj, Photocatalytic degradation of methylene blue by nickel oxide nanoparticles. Mater. Today Proc. 4, 11690–11695 (2017). https://doi.org/10.1016/j.matpr.2017.09.083

    Article  Google Scholar 

  114. D.A. Svintsitskiy, M.K. Lazarev, T.Y. Kardash, E.A. Fedorova, E.M. Slavinskaya, A.I. Boronin, Mixed silver-nickel oxide AgNiO2: probing by CO during XPS study. J. Chem. Phys. (2020). https://doi.org/10.1063/1.5138237

    Article  Google Scholar 

  115. J.A. Adekoya, E.O. Dare, M.A. Mesubi, N. Revaprasadu, Synthesis and characterization of optically active fractal seed mediated silver nickel bimetallic nanoparticles. J. Mater. 2014, 1–9 (2014). https://doi.org/10.1155/2014/184216

    Article  Google Scholar 

  116. M. Ashokkumar, S. Muthukumaran, Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt. Mater. (Amst) 37, 671–678 (2014). https://doi.org/10.1016/j.optmat.2014.08.012

    Article  ADS  Google Scholar 

  117. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014). https://doi.org/10.1016/j.molstruc.2014.07.048

    Article  ADS  Google Scholar 

  118. S. Thambidurai, P. Gowthaman, M. Venkatachalam, S. Suresh, Enhanced bactericidal performance of nickel oxide-zinc oxide nanocomposites synthesized by facile chemical co-precipitation method. J. Alloys Compd. 830, 154642 (2020). https://doi.org/10.1016/j.jallcom.2020.154642

    Article  Google Scholar 

  119. C. Liu, D. Xie, P. Liu, S. Xie, S. Wang, F. Cheng, M. Zhang, L. Wang, Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film. Microchim. Acta. (2019). https://doi.org/10.1007/s00604-018-3146-2

    Article  Google Scholar 

  120. M.P. Deshpande, K.N. Patel, V.P. Gujarati, K. Patel, S.H. Chaki, Structural, thermal and optical properties of nickel oxide (NiO) nanoparticles synthesized by chemical precipitation method. Adv. Mater. Res. 1141, 65–71 (2016)

    Article  Google Scholar 

  121. S. Senapati, S.K. Srivastava, S.B. Singh, H.N. Mishra, Magnetic Ni/Ag core-shell nanostructure from prickly Ni nanowire precursor and its catalytic and antibacterial activity. J. Mater. Chem. 22, 6899–6906 (2012). https://doi.org/10.1039/c2jm00143h

    Article  Google Scholar 

  122. Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu, G. Lu, Preparation of NiO nanoparticles in microemulsion and its gas sensing performance. Mater. Lett. 68, 168–170 (2012). https://doi.org/10.1016/j.matlet.2011.10.039

    Article  Google Scholar 

  123. X. Zhang, Q. Liu, Z. Fan, Enhanced in situ combustion of heavy crude oil by nickel oxide nanoparticles. Int. J. Energy Res. 43, 3399–3412 (2019). https://doi.org/10.1002/er.4478

    Article  Google Scholar 

  124. I.A. Wani, S. Khatoon, A. Ganguly, J. Ahmed, T. Ahmad, Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Coll. Surf. B Biointerf. 101, 243–250 (2013). https://doi.org/10.1016/j.colsurfb.2012.07.001

    Article  Google Scholar 

  125. T. Ahmad, I.A. Wani, O.A. Al-Hartomy, A.S. Al-Shihri, A. Kalam, Low temperature chemical synthesis and comparative studies of silver oxide nanoparticles. J. Mol. Struct. 1084, 9–15 (2015). https://doi.org/10.1016/j.molstruc.2014.12.015

    Article  ADS  Google Scholar 

  126. H.K. Wang, C.Y. Yi, L. Tian, W.J. Wang, J. Fang, J.H. Zhao, W.G. Shen, Ag-Cu bimetallic nanoparticles prepared by microemulsion method as catalyst for epoxidation of styrene. J. Nanomater. 2012, 1–8 (2012). https://doi.org/10.1155/2012/453915

    Article  Google Scholar 

  127. L. Chen, W. Kong, J. Yao, H. Zhang, B. Gao, Y. Li, H. Bu, A. Chang, C. Jiang, Synthesis and characterization of Mn-Co-Ni-O ceramic nanoparticles by reverse microemulsion method. Ceram. Int. 41, 2847–2851 (2015). https://doi.org/10.1016/j.ceramint.2014.10.106

    Article  Google Scholar 

  128. Y. Thaver, S.O. Oseni, G. Tessema, Silver doped nickel oxide nanocomposite and photon harvesting enhancement in bulkheterojunction organic solar cell. Sol. Energy 214, 11–18 (2021). https://doi.org/10.1016/j.solener.2020.11.044

    Article  ADS  Google Scholar 

  129. M.Z. Bani-Fwaz, A.A. El-Zahhar, H.S.M. Abd-Rabboh, M.S. Hamdy, M. Shkir, Synthesis of NiO nanoparticles by thermal routes for adsorptive removal of crystal violet dye from aqueous solutions. Int. J. Environ. Anal. Chem. 00, 1–19 (2019). https://doi.org/10.1080/03067319.2019.1678599

    Article  Google Scholar 

  130. M. Goudarzi, N. Mir, M. Mousavi-Kamazani, S. Bagheri, M. Salavati-Niasari, Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci. Rep. 6, 1–13 (2016). https://doi.org/10.1038/srep32539

    Article  Google Scholar 

  131. D. Adner, J. Noll, S. Schulze, M. Hietschold, H. Lang, Asperical silver nanoparticles by thermal decomposition of a single-source-precursor. Inorganica Chim. Acta. 446, 19–23 (2016). https://doi.org/10.1016/j.ica.2016.02.059

    Article  Google Scholar 

  132. O.A.D. Gallardo, R. Moiraghi, M.A. MacChione, J.A. Godoy, M.A. Pérez, E.A. Coronado, V.A. MacAgno, Silver oxide particles/silver nanoparticles interconversion: susceptibility of forward/backward reactions to the chemical environment at room temperature. RSC Adv. 2, 2923–2929 (2012). https://doi.org/10.1039/c2ra01044e

    Article  ADS  Google Scholar 

  133. A. Kalam, A.G. Al-Sehemi, A.S. Al-Shihri, G. Du, T. Ahmad, Synthesis and characterization of NiO nanoparticles by thermal decomposition of nickel linoleate and their optical properties. Mater. Charact. 68, 77–81 (2012). https://doi.org/10.1016/j.matchar.2012.03.011

    Article  Google Scholar 

  134. M. Salavati-Niasari, N. Mir, F. Davar, A novel precursor in preparation and characterization of nickel oxide nanoparticles via thermal decomposition approach. J. Alloys Compd. 493, 163–168 (2010). https://doi.org/10.1016/j.jallcom.2009.11.153

    Article  Google Scholar 

  135. K.P. Donegan, J.F. Godsell, D.J. Otway, M.A. Morris, S. Roy, J.D. Holmes, Size-tuneable synthesis of nickel nanoparticles. J. Nanoparticle Res. (2012). https://doi.org/10.1007/s11051-011-0670-y

    Article  Google Scholar 

  136. J. Pinkas, J. Sopoušek, P. Brož, V. Vykoukal, J. Buršík, J. Vřešťál, Synthesis, structure, stability and phase diagrams of selected bimetallic silver- and nickel-based nanoparticles. Calphad Comput. Coupling Ph. Diagr. Thermochem. 64, 139–148 (2019). https://doi.org/10.1016/j.calphad.2018.11.013

    Article  Google Scholar 

  137. M.A. Raza, Z. Kanwal, A. Rauf, A.N. Sabri, S. Riaz, S. Naseem, Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6(4), 74 (2016). https://doi.org/10.3390/nano6040074

    Article  Google Scholar 

  138. P.M. Ponnusamy, S. Agilan, N. Muthukumarasamy, T.S. Senthil, G. Rajesh, M.R. Venkatraman, D. Velauthapillai, Structural, optical and magnetic properties of undoped NiO and Fe-doped NiO nanoparticles synthesized by wet-chemical process. Mater. Charact. 114, 166–171 (2016). https://doi.org/10.1016/j.matchar.2016.02.020

    Article  Google Scholar 

  139. L. Gharibshahi, E. Saion, E. Gharibshahi, A.H. Shaari, K.A. Matori, Influence of Poly(vinylpyrrolidone) concentration on properties of silver nanoparticles manufactured by modified thermal treatment method. PLoS ONE 12, 1–17 (2017). https://doi.org/10.1371/journal.pone.0186094

    Article  Google Scholar 

  140. M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor. J. Alloys Compd. 494, 410–414 (2010). https://doi.org/10.1016/j.jallcom.2010.01.063

    Article  Google Scholar 

  141. M. Zainy, N.M. Huang, S.V. Kumar, H.N. Lim, C.H. Chia, I. Harrison, Simple and scalable preparation of reduced graphene oxide-silver nanocomposites via rapid thermal treatment. Mater. Lett. 89, 180–183 (2012). https://doi.org/10.1016/j.matlet.2012.08.101

    Article  Google Scholar 

  142. L. Gharibshahi, E. Saion, E. Gharibshahi, A.H. Shaari, K.A. Matori, Structural and optical properties of ag nanoparticles synthesized by thermal treatment method. Materials (Basel) 10, 402 (2017). https://doi.org/10.3390/ma10040402

    Article  ADS  Google Scholar 

  143. D. Poondi, J. Singh, Synthesis of metastable silver-nickel alloys by a novel laser-liquid-solid interaction technique. J. Mater. Sci. 35, 2467–2476 (2000). https://doi.org/10.1023/A:1004765618078

    Article  ADS  Google Scholar 

  144. D. Poondi, T. Dobbins, J. Singh, Novel laser-liquid-solid interaction technique for synthesis of silver, nickel and immiscible silver-nickel alloys from liquid precursors. J. Mater. Sci. 35, 6237–6243 (2000). https://doi.org/10.1023/A:1026701915796

    Article  ADS  Google Scholar 

  145. X. Zhang, H. Sun, S. Tan, J. Gao, Y. Fu, Z. Liu, Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study. Inorg. Chem. Commun. 100, 44–50 (2019). https://doi.org/10.1016/j.inoche.2018.12.012

    Article  ADS  Google Scholar 

  146. N.M. Al-Hada, H.M. Kamari, M.A. Saleh, M.H. Flaifel, A.M. Al-Ghaili, H. Kasim, A.A. Baqer, E. Saion, W. Jihua, Morphological, structural and optical behaviour of PVA capped binary (NiO)0.5 (Cr2O3)0.5 nanoparticles produced via single step based thermal technique. Results Phys. 17, 103059 (2020). https://doi.org/10.1016/j.rinp.2020.103059

    Article  Google Scholar 

  147. T. Guo, M.S. Yao, Y.H. Lin, C.W. Nan, A comprehensive review on synthesis methods for transition-metal oxide nanostructures. CrystEngComm 17, 3551–3585 (2015). https://doi.org/10.1039/c5ce00034c

    Article  Google Scholar 

  148. R. Paulose, R. Mohan, V. Parihar, Nanostructured nickel oxide and its electrochemical behaviour—A brief review. Nano-Struct. Nano-Objects 11, 102–111 (2017). https://doi.org/10.1016/j.nanoso.2017.07.003

    Article  Google Scholar 

  149. R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018). https://doi.org/10.1016/j.jallcom.2017.10.262

    Article  Google Scholar 

  150. T.P. Mokoena, H.C. Swart, D.E. Motaung, A review on recent progress of p-type nickel oxide based gas sensors: future perspectives. J. Alloys Compd. 805, 267–294 (2019). https://doi.org/10.1016/j.jallcom.2019.06.329

    Article  Google Scholar 

  151. Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012). https://doi.org/10.3390/s120302610

    Article  ADS  Google Scholar 

  152. M. Napari, T.N. Huq, R.L.Z. Hoye, J.L. MacManus-Driscoll, Nickel oxide thin films grown by chemical deposition techniques: potential and challenges in next-generation rigid and flexible device applications. InfoMat 3, 536–576 (2021). https://doi.org/10.1002/inf2.12146

    Article  Google Scholar 

  153. S. Ahmad, H. Rashid, Q. Jalil, S. Munir, S. Khan, B. Barkatullah, R. Ullah, A.A. Shahat, A.A.N.A. A-Mishari, A.A. Shahat, H.M. Mahmood, A. Bari, Polymers encapsulated aspirin loaded silver oxide nanoparticles: synthesis, characterization and its bio-applications. Sains Malays. 48, 1887–1897 (2019). https://doi.org/10.17576/jsm-2019-4809-09

    Article  Google Scholar 

  154. W.M. Shume, H.C.A. Murthy, E.A. Zereffa, A review on synthesis and characterization of Ag2O nanoparticles for photocatalytic applications. J. Chem. 2020, 1–15 (2020). https://doi.org/10.1155/2020/5039479

    Article  Google Scholar 

  155. M.M. Sk, C.Y. Yue, K. Ghosh, R.K. Jena, Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Pow. Sour. 308, 121–140 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naif Mohammed Al-Hada.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Absi, E., Saleh, M., Al-Hada, N.M. et al. A review on preparation and characterization of silver/nickel oxide nanostructures and their applications. Appl. Phys. A 127, 871 (2021). https://doi.org/10.1007/s00339-021-04979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04979-8

Keywords

Navigation