Skip to main content
Log in

Synthesis of high surface area and plate-like Magnesium Oxide nanoparticles by pH-controlled precipitation method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Synthesized magnesium oxide (MgO) nanoparticles by a simple pH-controlled precipitation method using Mg (SO4)2 as a precursor. The XRD spectra of MgO recorded at room temperature showed FCC structure. Crystallite size for synthesized MgO was calculated using Scherrer and Williamson-Hall method. The Rietveld refinement was carried out to find cell dimensions, micro-strain, and Mg2+ vacancies. The Rietveld refinement showed a good fit with R-factors. SEM images show agglomerated plate-like morphology. The surface area data were evaluated by Brunner–Emmet–Teller method and found to be 246.95 g/m2 with an average pore diameter of 6.721 nm. Smaller size and high surface area of MgO contributed to the observed band gap value of 5.8 eV. These nanoparticles with small size and high surface area have potential applications as catalysts and in the next generation biosensor applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Zhang, J. Hu, J. Xie, S. Wang, Y. Cao, A solid-state chemical method for synthesizing MgO nanoparticles with superior adsorption. RSC Adv. 9(4), 2011–2017 (2019). https://doi.org/10.1039/c8ra09199d

    Article  ADS  Google Scholar 

  2. G. Taglieri, V. Daniele, MgO nanoparticles synthesized starting from an innovative one-step process. J. Am. Ceram. Soc. 1–10 (2017). https://doi.org/10.1111/jace.15328

  3. A. Mashayekh-salehi, G. Moussavi, K. Yaghmaeian, Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as emerging water contaminants correspondence to: Gholamreza Moussavi. Chem. Eng. J. (2016). https://doi.org/10.1016/j.cej.2016.10.096

    Article  Google Scholar 

  4. J. Chen, Y. Lau, J.M.D. Coey, M. Li, J. Wang, High performance MgO-barrier magnetic tunnel junctions for flexible and wearable spintronic applications. Sci. Rep. (2017). https://doi.org/10.1038/srep42001

    Article  Google Scholar 

  5. J. Ding, C. Yu, J. Lu, X. Wei, W. Wang, G. Pan, Enhanced CO2 adsorption of MgO with alkali metal nitrates and carbonates. Appl. Energy 263, 114681 (2020). https://doi.org/10.1016/j.apenergy.2020.114681

    Article  Google Scholar 

  6. F.E. Scanning, The effect of capping agent on the structural, optical properties and photocatalytic activity of MgO nanostructures. Phys. B Phys. Condens. Matter 583, 1–7 (2020). https://doi.org/10.1016/j.physb.2020.412064

    Article  Google Scholar 

  7. J. Downloaded, C. Zhang, Y. Chen, M. Zhou, Achieving ultrahigh dielectric breakdown strength in MgO-based ceramics by composite structure design. J. Mater. Chem. C 7(26), 8120–8130 (2019). https://doi.org/10.1039/c9tc02197c

    Article  Google Scholar 

  8. K.T. Selvi, K.A. Mangai, M. Priya, S. Sagadevan, Investigation of the dielectric and impedance properties of ZnO/MgO nanocomposite. Phys. B Phys. Condens. Matter. 594, 412355 (2020). https://doi.org/10.1016/j.physb.2020.412355

    Article  Google Scholar 

  9. O. Oginni, G.A. Yakaboylu, K. Singh, E.M. Sabolsky, G. Unal-tosun, D. Jaisi, S. Khanal, A. Shah, N. Resources, U. States, Journal of environmental chemical engineering phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources. J. Environ. Chem. Eng. 8, 103723 (2020). https://doi.org/10.1016/j.jece.2020.103723

    Article  Google Scholar 

  10. M. Fernandes, K.R.B. Singh, T. Sarkar, P. Singh, R.P. Singh, Recent applications of magnesium oxide (MgO) nanoparticles in various domains. Adv. Mater. Lett. 11(8), 20081543 (2020). https://doi.org/10.5185/amlett.2020.081543

    Article  Google Scholar 

  11. Y. Heo, S. Park, Facile synthesis of MgO- modified carbon adsorbents with microwave- assisted methods: effect of MgO particles and porosities on CO2 capture. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-06091-5

    Article  Google Scholar 

  12. M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, I. Samir, MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. J. Mol. Liq. 225, 730–740 (2017). https://doi.org/10.1016/j.molliq.2016.10.135

    Article  Google Scholar 

  13. W. Cui, P. Li, Z. Wang, S. Zheng, Y. Zhang, Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method graphical abstract adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method. J. Hazard. Mater. (2017). https://doi.org/10.1016/j.jhazmat.2017.07.073

    Article  Google Scholar 

  14. N.M.A. Hadia, H.A. Mohamed, Materials science in semiconductor processing characteristics and optical properties of MgO nanowires synthesized by solvothermal method. Mater. Sci. Semicond. Process. (2014). https://doi.org/10.1016/j.mssp.2014.03.049

    Article  Google Scholar 

  15. J.K. Bartley, C. Xu, R. Lloyd, D.I. Enache, D.W. Knight, G.J. Hutchings, Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Appl. Catal. B Environ. 128, 31–38 (2012). https://doi.org/10.1016/j.apcatb.2012.03.036

    Article  Google Scholar 

  16. H. Zhang, J. Hu, J. Xie, S. Wang, Y. Cao, A solid-state chemical method for synthesizing MgO nanoparticles with superior adsorption properties. RSC Adv. 9, 2011–2017 (2019). https://doi.org/10.1039/C8RA09199D

    Article  ADS  Google Scholar 

  17. H. Mirzaei, A. Davoodnia, Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch. Chinese J. Catal. 33, 1502–1507 (2012). https://doi.org/10.1016/S1872-2067(11)60431-2

    Article  Google Scholar 

  18. A. Subramania, G.V. Kumar, A.R.S. Priya, T. Vasudevan, Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires. Nanotechnology (2007). https://doi.org/10.1088/0957-4484/18/22/225601

    Article  Google Scholar 

  19. D. Thi, C. Nguyen, H.H. Dang, D.N. Vo, L.G. Bach, T.D. Nguyen, T. Van Tran, J. Hazard. Mater. 404, 124146 (2020). https://doi.org/10.1016/j.jhazmat.2020.124146

    Article  Google Scholar 

  20. J. Jeevanandam, Y.S. Chan, M.K. Danquah, Calcination-dependent morphology transformation of sol-gel- synthesized MgO nanoparticles. ChemistrySelect 2(32), 10393–10404 (2017). https://doi.org/10.1002/slct.201701911

    Article  Google Scholar 

  21. A.L. Gajengi, T. Sasaki, B.M. Bhanage, Mechanistic aspects of formation of MgO nanoparticles under microwave irradiation and its catalytic application. Adv. Powder Technol. (2017). https://doi.org/10.1016/j.apt.2017.02.004

    Article  Google Scholar 

  22. A. Najafi, Author ’ s accepted manuscript a novel synthesis method of hierarchical mesoporous MgO nanoflakes employing carbon nanoparticles as the hard templates for photocatalytic degradation. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.01.135

    Article  Google Scholar 

  23. C. Wee, W. Yen, S. Chan, J. Jeevanandam, K. Pal, M. Bechelany, Response surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol-gel method for outstanding antimicrobial and antibiofilm activities. J. Clust. Sci. (2019). https://doi.org/10.1007/s10876-019-01651-3

    Article  Google Scholar 

  24. K.R. Singh, V. Nayak, J. Singh, A.K. Singh, R.P. Singh, Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv. 11, 24722–24746 (2021). https://doi.org/10.1039/d1ra04273d

    Article  ADS  Google Scholar 

  25. P. Singh, K.R. Singh, J. Singh, P. Prasad, R.P. Singh, Bioinspired triangular ZnO nanoclusters synthesized by Argyreia nervosanascent leaf extract for the efficient electrochemical determination of vitamin C. RSC Adv. 11, 25752–25763 (2021). https://doi.org/10.1039/d1ra04704c

    Article  ADS  Google Scholar 

  26. P. Singh, K.R.B. Singh, J. Singh, S.N. Das, R.P. Singh, Tunable electrochemistry and efficient antibacterial activity of plant-mediated copper oxide nanoparticles synthesized by: annona squamosa seed extract for agricultural utility. RSC Adv. 11, 18050–18060 (2021). https://doi.org/10.1039/d1ra02382a

    Article  ADS  Google Scholar 

  27. G.K. Chuah, S. Jaenicke, S.A. Cheong, K.S. Chan, The influence of preparation conditions on the surface area of zirconia. Applied Catalysis A: General 145, 267–284 (1996). https://doi.org/10.1016/0926-860X(96)00152-4

    Article  Google Scholar 

  28. V.R. Choudhary, M.Y. Pandit, Surface properties of magnesium oxide obtained from magnesium hydroxide: influence on preparation and calcination conditions of magnesium hydroxide. Appl. Catal. 71, 265–274 (1991)

    Article  Google Scholar 

  29. R. Sreekanth, S.S. Joshi, R.P. Reddy, Fuel properties of B100 and blends of terminalia belerica (Roxb.) oil biodiesel synthesised using SrO as a basic heterogeneous catalyst. Biofuels (2018). https://doi.org/10.1080/17597269.2017.1413859

    Article  Google Scholar 

  30. C. Angelici, M.E.Z. Velthoen, B.M. Weckhuysen, P.C.A. Bruijnincx, MgO materials. Catal. Sci. Technol. 5(5), 2869–2879 (2015). https://doi.org/10.1039/c5cy00200a

    Article  Google Scholar 

  31. J. Rodríguez-Carvajal Saclay, An introduction to the program FullProf (Version July 2001)

  32. M. Jain, A. Vij, A. Thakur, Impact of annealing on the structural properties of MgO nanoparticles by XRD analysis and rietveld refinement. AIP Conf. Proc. 020024, 1–5 (2019). https://doi.org/10.1063/1.5097093

    Article  Google Scholar 

  33. R.A. Young, The Rietveld Method- International Union of Crystallography Monographs on Crystallography. Oxford University Press, USA (1995)

  34. M.A. Boiocchi, F.R. Caucia, M.A. Merli, D.A. Prella, I. Pavia, Crystal-chemical reasons for the immiscibility of periclase and wüstite under lithospheric P T conditions. Eur. J. Mineral. (2001). https://doi.org/10.1127/0935-1221/2001/0013/0871

    Article  Google Scholar 

  35. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Youse, X-ray analysis of ZnO nanoparticles by Williamson e Hall and size e strain plot methods. Solid State Sci. (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  Google Scholar 

  36. M. Kurian, C. Kunjachan, Investigation of size dependency on lattice strain of nanoceria particles synthesised by wet chemical methods. Int. Nano Lett. 4(4), 73–80 (2014). https://doi.org/10.1007/s40089-014-0122-7

    Article  Google Scholar 

  37. R. Wahab, S.G. Ansari, Y.S. Kim, M. Song, H.S. Shin, The role of pH variation on the growth of zinc oxide nanostructures. Appl. Surf. Sci. 255, 4891–4896 (2009). https://doi.org/10.1016/j.apsusc.2008.12.037

    Article  ADS  Google Scholar 

  38. G. Fagerlund, Determination of specific surface by the BET method. Matériaux et Construction, 6, 239–245 (1973)

    Article  Google Scholar 

  39. J. Garcı, M. Thommes, Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. (2016). https://doi.org/10.1039/C6CS00391E

    Article  Google Scholar 

  40. V.R. Choudhary, S.G. Pataskar, G.B. Zope, P.N. Chaudhari, Surface properties of magnesium oxide obtained from basic magnesium carbonate: influence of preparation conditions of magnesium carbonate. J. Chem. Technol. Biotechnol. 64(4), 407–413 (1995)

    Article  Google Scholar 

  41. S. Behij, H. Hammi, A.H. Hamzaoui, M. Adel, Magnesium salts as compounds of the preparation of magnesium oxide from Tunisian natural brines. Chem. Ind. Chem. Eng. Q. 19(2), 263–271 (2012)

    Article  Google Scholar 

  42. E. Alvarado, L.M. Torres-martinez, A.F. Fuentes, P. Quintana, Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite. Polyhedron 19, 2345–2351 (2000)

    Article  Google Scholar 

  43. K. Pandiselvi, A. Manikumar, S. Thambidurai, Synthesis of novel polyaniline/MgO composite for enhanced adsorption of reactive dye. J. Appl. Polym. Sci. 40210, 1–9 (2014). https://doi.org/10.1002/app.40210

    Article  Google Scholar 

  44. H. Thoms, M. Epple, A. Reller, The thermal decomposition of magnesium alcoholates to magnesia (MgO): studies by IR and thermal analysis. Solid State Ion. 101–103, 79–84 (1997). https://doi.org/10.1016/s0167-2738(97)00230-0

    Article  Google Scholar 

  45. G. Pacchioni, H. Freund, Electron transfer at oxide surfaces. The MgO paradigm: from defects to ultrathin films. Chem. Rev. 113, 4035–4072 (2013). https://doi.org/10.1021/cr3002017

    Article  Google Scholar 

  46. K. Mageshwari, R. Sathyamoorthy, P.S. Patil, Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technol. 249, 456–462 (2013). https://doi.org/10.1016/j.powtec.2013.09.016

    Article  Google Scholar 

  47. H. Hattori, Heterogeneous basic catalysis. Chem. Rev. 95(3), 537–558 (1995)

    Article  Google Scholar 

  48. N.C.S. Selvam, R.T. Kumar, L.J. Kennedy, J.J. Vijaya, Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J. Alloys Compd. 509, 9809–9815 (2011). https://doi.org/10.1016/j.jallcom.2011.08.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayadev Pattar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreekanth, R., Pattar, J., Anupama, A.V. et al. Synthesis of high surface area and plate-like Magnesium Oxide nanoparticles by pH-controlled precipitation method. Appl. Phys. A 127, 797 (2021). https://doi.org/10.1007/s00339-021-04939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04939-2

Keywords

Navigation