Skip to main content
Log in

Elucidation of room temperature humidity sensing properties of Mn2O3 particles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

MnCO3 particles were thermally decomposed to obtain Mn2O3 particles. MnCO3 was prepared by co-precipitation method using MnCl2.4H2O and CO(NH2)2 as reactants. Two separate parts of the obtained MnCO3 were calcined at 450 °C and 550 °C. The structural, crystallographic, morphological properties and elemental composition of all the materials were investigated using Fourier transform infrared spectrometry (FTIR), X-ray diffraction analysis (XRD), scanning electron microscopy and energy-dispersive X-rays spectroscopy (EDX). FTIR spectrum of the precursor and calcined products was related to MnCO3 and Mn2O3, respectively. As per XRD study, the precursor and calcined product obtained at 550 °C was crystalline, while the product obtained at 450 °C was amorphous in nature. From topographic study, the particles of MnCO3 and Mn2O3 were of cuboid shape. Elemental analysis of the samples via EDX analysis confirmed that the weight and atomic percentages of the precursor and calcined products are related to MnCO3 and Mn2O3, respectively. Afterward, the calcined products were used for investigation of their humidity sensing behavior at room temperature. The product obtained at 550 °C demonstrated reproducible, highly sensitivity and stable response toward humidity having response and recovery time 3 s and 13 s, respectively. Percent sensitivity of this material increased up to 96% by varying the humidity from 35 to 96%. The sensing mechanism was suggested to be based on protonic model, wherein the generation of H+ ions due to the dissociation of H3O+ ions reduces the sensor resistance and enhances the humidity sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Wang, R.W. Besant, C.J. Simonson, W. Shang, Application of humidity sensors and an interactive device. Sens. Actuators B. 115, 93 (2006)

    Article  Google Scholar 

  2. P.J. Thomas, J.O. Hellevang, A fully distributed fiber optic sensor for relative humidity measurements. Sens. Actuators B. 247, 284 (2017)

    Article  Google Scholar 

  3. T.Q. Trung, S. Ramasundaram, N.E. Lee, Transparent, stretchable, and rapid response humidity sensor for body-attachable wearable electronics. Nano Res. 10, 2021 (2017)

    Article  Google Scholar 

  4. R. Lv, J. Peng, S. Chen, Y. Hu, M. Wang, J. Lin, X. Zhou, X. Zheng, A highly linear humidity sensor based on quartz crystal microbalance coated with urea formaldehyde resin/nano silica composite films. Sens. Actuators B. 250, 721 (2017)

    Article  Google Scholar 

  5. M.V. Boskovic, M. Sarajlic, M. Frantlovic, M.M. Smiljanic, D.V. Randjelovic, K.C. Zobenica, D.V. Radovic, Aluminum-based self-powered hyper-fast miniaturized sensor for breath humidity detection. Sens. Actuators B. 321, 128635 (2020)

    Article  Google Scholar 

  6. J.B. Weaver, Hot nanoparticles light up cancer. Nat. Nanotechnol. 5, 630 (2010)

    Article  ADS  Google Scholar 

  7. Y. Zhao, M. Chen, F. Xia, R. Lv, Small in-fiber fabry-perot low frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber. Sens. Actuators A. 270, 162 (2018)

    Article  Google Scholar 

  8. T.G. Kang, J.K. Park, G.H. Yun, H.H. Choi, H.J. Lee, J.G. Yook, A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT: PSS film. Sens. Actuators B. 282, 145 (2019)

    Article  Google Scholar 

  9. J. Ying, C. Wan, P. He, Sol–gel processed TiO2–K2O–LiZnVO4 ceramic thin films as innovative humidity sensors. Sens. Actuators B. 62, 165 (2000)

    Article  Google Scholar 

  10. M. Anbia, S.E.M. Fard, Humidity sensing properties of La3+ and K+ co-doped Ti0.9Sn0.1O2 thin films. J. Rare Earth 29, 668 (2011)

    Article  Google Scholar 

  11. T. Fei, K. Jiang, F. Jiang, R. Mu, T. Zhang, Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J. Appl. Polym. Sci. 131, 39726 (2014)

    Article  Google Scholar 

  12. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B. 225, 233 (2016)

    Article  Google Scholar 

  13. X. Song, Q. Xu, H. Xu, B. Cao, Highly sensitive gold-decorated zinc oxide nanorods sensor for triethylamine working at near room temperature. J. Colloids Interf. Sci. 499, 67 (2017)

    Article  ADS  Google Scholar 

  14. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 1st edn. (Pergamon Press, New York, 1984)

    Google Scholar 

  15. H. Peng, Y. Leng, Q. Cheng, Q. Shang, J. Shu, J. Guo, Efficient removal of hexavalent chromium from wastewater with electro-reduction. Processes 7, 41 (2019)

    Article  Google Scholar 

  16. M. Saeed, M. Ilyas, M. Siddique, A. Ahmad, Oxidative degradation of oxalic acid in aqueous medium using manganese oxide as catalyst at ambient temperature and pressure. Arab. J. Sci. Eng. 38, 1739 (2013)

    Article  Google Scholar 

  17. F. Dogan, B.R. Long, J.R. Croy, K.G. Gallagher, H. Iddir, J.T. Russell, M. Balasubramanian, B. Key, Re-entrant lithium local environments and defect driven electrochemistry of Li-and Mn-rich Li-ion battery cathodes. J. Am. Chem. Soc. 137, 2328 (2015)

    Article  Google Scholar 

  18. H. Koyanaka, Y. Ueda, K. Takeuchi, A.I. Kolesnikov, Effect of crystal structure of manganese dioxide on response for electrolyte of a hydrogen sensor operative at room temperature. Sens. Actuators B. 183, 641 (2013)

    Article  Google Scholar 

  19. S. Cao, T. Han, L. Peng, B. Liu, Hydrothermal preparation, formation mechanism and gas-sensing properties of novel Mn3O4 nano-octahedrons. Mater. Lett. 246, 210 (2019)

    Article  Google Scholar 

  20. A. Mirzaei, H.W. Kim, S.S. Kim, G. Neri, Nanostructured semiconducting metal oxide gas sensors for acetaldehyde detection. Chemosensors 7, 56 (2019)

    Article  Google Scholar 

  21. A.K. Srinath, L. Sankaranarayanan, R. Pandeeswari, B.G. Jeyaprakash, Thin films of α-Mn2O3 for resistance-based sensing of acetaldehyde vapors at ambient temperature. Microchim. Acta. 182, 1619 (2015)

    Article  Google Scholar 

  22. S. Sharma, P. Chauhan, S. Husain, Structural and optical properties of Mn2O3 nanoparticles & its gas sensing applications. Adv. Mater. Proc. 1, 220 (2016)

    Article  Google Scholar 

  23. C.N. Xua, K. Miyazakib, T. Watanabe, Humidity sensors using manganese oxides. Sens. Actuators B. 46, 87 (1998)

    Article  Google Scholar 

  24. K. Malook, H. Khan, M. Ali, I. Haque, Investigation of room temperature humidity sensing performance of mesoporous CuO particles. Mater. Sci. Semicond. Process. 113, 105021 (2020)

    Article  Google Scholar 

  25. X.C. Duan, J.B. Lian, J.M. Ma, T. Kim, W.J. Zheng, Shape-controlled synthesis of metal carbonate nanostructure via ionic liquid-assisted hydrothermal route: the case of manganese carbonate. Cryst. Growth Des. 10, 4449 (2010)

    Article  Google Scholar 

  26. L. Wang, Y.W. Sun, S.Y. Zeng, C.S. Cui, H.B. Li, S.L. Xu, H.S. Wang, Study on the morphology-controlled synthesis of MnCO3 materials and their enhanced electrochemical performance for lithium ion batteries. Cryst. Eng Comm. 18, 8072 (2016)

    Article  Google Scholar 

  27. J. Santillan, Q. Williams, A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Phys. Earth Planet. Inter. 143–144, 291 (2004)

    Article  ADS  Google Scholar 

  28. M.S. Yadav, Synthesis and characterization of Mn2O3−Mn3O4 nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J. Energy Storage 27, 101079 (2020)

    Article  Google Scholar 

  29. T.D. Dang, A.N. Banerjee, Q.T. Tran, Fast degradation of dyes in water using manganese-oxide-coated diatomite for environmental remediation. J. Phys. Chem. Solids. 98, 50 (2016)

    Article  ADS  Google Scholar 

  30. Y. Ding, C. Hou, B. Li, Y. Lei, Sensitive hydrazine detection using a porous Mn2O3 nanofibers based sensor. Electroanalysis 23, 1245 (2011)

    Article  Google Scholar 

  31. M. Sajjad, I. Ullah, M.I. Khan, J. Khan, M.Y. Khan, M.T. Qureshi, Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys. 9, 1301 (2018)

    Article  ADS  Google Scholar 

  32. Z. Yang, W. Zhang, Q. Wang, X. Song, Y. Qian, Synthesis of porous and hollow microspheres of nanocrystalline Mn2O3. Chem. Phys. Lett. 418, 46 (2006)

    Article  ADS  Google Scholar 

  33. C. Wang, X.Q. Fu, X.Y. Xue, Y.G. Wang, T.H. Wang, Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption. Nanotechnology 18, 145506 (2007)

    Article  ADS  Google Scholar 

  34. D.D. Li, J. Hu, R.Q. Wu, J.G. Lu, Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology 21, 485502 (2010)

    Article  Google Scholar 

  35. D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Facile fabrication of high performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuators B. 255, 1869 (2018)

    Article  Google Scholar 

  36. K. Sahoo, B. Mohanty, A. Biswa, J. Nayak, Role of hexamethylenetetramine in ZnO-cellulose nanocomposite enabled UV and humidity sensor. Mater. Sci. Semicond. Process. 105, 104699 (2020)

    Article  Google Scholar 

  37. A.S. Ismail, M.H. Mamat, M.M. Yusoff, M.F. Malek, A.S. Zoolfakar, R.A. Rani, A.B. Suriani, A. Mohamed, M.K. Ahmad, M. Rusop, Enhanced humidity sensing performance using Sn-Doped ZnO nanorod array/SnO+ nanowire heteronetwork fabricated via two-step solution immersion. Mater Lett. 210, 258 (2018)

    Article  Google Scholar 

  38. K. Hayat, F. Niaz, S. Ali, M.J. Iqbal, M. Ajmal, M. Ali, Y. Iqbal, Thermoelectric performance and humidity sensing characteristics of La2CuO4 nanofibers. Sens. Actuators B. 231, 102 (2016)

    Article  Google Scholar 

  39. K. Pomoni, A. Vomvas, C. Trapalis, Dark conductivity and transient photoconductivity of nanocrystalline undoped and N-doped TiO2 sol–gel thin films. Thin Solid Films 516, 1271 (2008)

    Article  ADS  Google Scholar 

  40. Q. Wang, Y.Z. Pan, S.S. Huang, S.T. Ren, P. Li, J.J. Li, Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor. Nanotechnology 22, 025501 (2011)

    Article  ADS  Google Scholar 

  41. A. Gupta, N. Sakhuja, R.K. Jha, N. Bhat, Ultrasensitive chemiresistive humidity sensor based on gold functionalized WS2 nanosheets. Sens. Actuators A Phy. 331, 113008 (2021)

    Article  Google Scholar 

  42. M.A. Dwiputra, F. Fadhila, C. Imawan, V. Fauzia, The enhanced performance of capacitive-type humidity sensors based on ZnO nanorods/WS2 nanosheets heterostructure. Sens. Actuators B Chem. 310, 127810 (2020)

    Article  Google Scholar 

  43. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal, oxide/graphene hybrid nanocomposite. Sens. Actuators B Chem. 225, 233 (2016)

    Article  Google Scholar 

  44. F.S. Tsai, S.J. Wang, Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets. Sens. Actuators B Chem. 193, 280 (2014)

    Article  Google Scholar 

  45. A.S. Ismail, M.H. Mamat, N.D. Sin, M.F. Malek, A.S. Zoolfakar, A.B. Suriani, A. Mohamed, M.K. Ahmad, M. Rusop, Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol−gel immersion for room temperature, resistive-type humidity sensor applications. Ceram. Int. 42, 9785 (2016)

    Article  Google Scholar 

  46. A.S. Ismail, M.H. Mamat, M.F. Malek, M.M. Yusoff, R. Mohamed, N.D.M. Sin, A.B. Suriani, M. Rusop, Heterogeneous SnO2/ZnO nanoparticulate film: facile synthesis and humidity sensing capability. Mater. Sci. Semicond. Proc. 81, 127 (2018)

    Article  Google Scholar 

  47. A.M.E.S. Raj, C. Mallika, O.M. Sreedharan, K.S. Nagaraja, Manganese oxide–manganese tungstate composite humidity sensors. Mater. Lett. 53, 320 (2002)

    Google Scholar 

  48. A. Leong, S. Seeneevassen, T. Saha, V. Swamy, N. Ramakrishnan, Low hysteresis relative humidity sensing characteristics of graphene oxide–gold nanocomposite coated langasite crystal microbalance. Surf. Interf. 23, 100964 (2021)

    Article  Google Scholar 

  49. Y. Sakai, Y. Sadaoka, M. Matsuguchi, Humidity sensors based on polymer thin films. Sens. Actuators B. 35, 85 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Centralized Resource Laboratory and Material Research Laboratory, University of Peshawar, 25120, Pakistan, for facilitating this work.

Funding

No funding was received for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan Malook.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 315 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malook, K., Ali, M. & Ul-Haque, I. Elucidation of room temperature humidity sensing properties of Mn2O3 particles. Appl. Phys. A 127, 758 (2021). https://doi.org/10.1007/s00339-021-04909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04909-8

Keywords

Navigation