Skip to main content
Log in

Magnetic and microwave absorption properties of La3+-substituted manganese ferrites synthesized via solid-state reaction method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

La3+-substituted manganese ferrites with chemical formula MnLaxFe(2−x)O4 (0 ≤ x ≤ 0.03) were prepared via solid -state reaction method. X-ray diffraction (XRD) analysis with Rietveld refinement method confirmed that all compositions exhibited a single-phase formation of manganese ferrite (MnFe2O4, cubic (Fd−3 m)). The lattice parameters were found to decrease with increasing La3+ ion substitution from 8.505 Å (x = 0) to 8.485 Å (x = 0.03). The substitution process was found to induce the lattice strain and hinder the crystallite growth in the La3+-doped samples. The particle size distribution curve of the La3+-substituted samples was shifted to smaller size compared to the original sample. Magnetic properties measurement was carried out to reveal the magnetic parameters such as saturation magnetization (Ms), remanence magnetization (Mr), and field coercivity (Hc). The Ms was determined from the law of approach to saturation (LAS) method. As the results, we found that the Ms values were decreased from 17.56 emu/g (x = 0) to 7.09 emu/g (x = 0.03), while the Hc values were increased from 126.50 Oe (x = 0) to 202.00 Oe (x = 0.03). The microwave absorbing property of all MnLaxFe(2−x)O4 (x = 0.0; 0.01; 0.02 and 0.03) series was measured in X-band frequency range (8–12 GHz). The results showed that the substitution of La3+ ion was responsible to the improvement of the microwave absorbing ability with the attenuation of microwave which was increased from 91.57 to 97.61%. Thus, the composition with x = 0.03 (MnLa0.03Fe1.97O4) showed an excellent response and can be considered as microwave absorbing material candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. V. Trukhanov, K. A. Astapovich, V. A. Turchenko, M. A. Almessiere, Y. Slimani, A. Baykal, A. S. B. Sombra, D. Zhou, R. B. Jotania, C. Singh, T. I. Zubar, D. I. Tishkevich, and S. V. Trukhanov, J. Alloys Compd. 841, (2020).

  2. Yunasfi, A. Mulyawan, Mashadi, Suyanti, W. A. Adi, J. Magn. Magn. Mater. 532, (2021).

  3. L.R.F. Leal, Y. Guerra, E. Padrón-Hernández, A.R. Rodrigues, F.E.P. Santos, R. Peña-Garcia, Mater. Lett. 236, 547 (2019)

    Article  Google Scholar 

  4. Y. Slimani, M. A. Almessiere, S. E. Shirsath, E. Hannachi, G. Yasin, A. Baykal, B. Ozçelik, and I. Ercan, J. Magn. Magn. Mater. 510, (2020).

  5. M. A. Almessiere, Y. Slimani, H. Gungunes, A. Manikandan, and A. Baykal, Results Phys. 13, 102166 (2019).

  6. R. Joshi, C. Singh, J. Singh, D. Kaur, S.B. Narang, R.B. Jotania, J. Mater. Sci. Mater. Electron. 28, 11969 (2017)

    Article  Google Scholar 

  7. J. Singh, C. Singh, D. Kaur, S. Bindra Narang, R. Jotania, and R. Joshi, J. Mater. Sci. Mater. Electron. 28, 2377 (2017).

  8. C. Singh, H. Kaur, S. Bindra Narang, P. Kaur, R. Kaur, and T. Dhiman, J. Alloys Compd. 683, 302 (2016).

  9. Z. K. Heiba, M. B. Mohamed, A. M. Wahba, and M. I. Almalowi, Appl. Phys. A Mater. Sci. Process. 124, 0 (2018).

  10. K.M. Naik, S. Sampath, Electrochim. Acta 292, 268 (2018)

    Article  Google Scholar 

  11. L.T.T Nguyen, H.T.T Nguyen, T.H. Le, L.T.H. Nguyen, H.Q. Nguyen, T.T.H. Pham, N.D Bui, N.T.K. Tran, D.T.C. Nguyen, T.V. Lam, Materials. 14, 2054 (2021).

    Article  ADS  Google Scholar 

  12. A.G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S.K. Jaganathan, A. Baykal, P.S. Renganathan, J. Magn. Magn. Mater. 452, 380 (2018)

    Article  ADS  Google Scholar 

  13. M.A. Almessiere, A.V. Trukhanov, F.A. Khan, Y. Slimani, N. Tashkandi, V.A. Turchenko, T.I. Zubar, D.I. Tishkevich, S.V. Trukhanov, L.V. Panina, A. Baykal, Ceram. Int. 46, 7346 (2020)

    Article  Google Scholar 

  14. D.I. Tishkevich, I.V. Korolkov, A.L. Kozlovskiy, M. Anisovich, D.A. Vinnik, A.E. Ermekova, A.I. Vorobjova, E.E. Shumskaya, T.I. Zubar, S.V. Trukhanov, M.V. Zdorovets, A.V. Trukhanov, J. Alloys Compd. 797, 573 (2019)

    Article  Google Scholar 

  15. T. Zhou, R. Zhang, Y. Wang, T. Zhang, Sensors Actuators. B Chem. 281, 885 (2019)

    Google Scholar 

  16. R. Cristina De Oliveira, R. A. Pontes Ribeiro, G. H. Cruvinel, R. A. Ciola Amoresi, M. H. Carvalho, A. J. Aparecido De Oliveira, M. Carvalho De Oliveira, S. Ricardo De Lazaro, L. Fernando Da Silva, A. C. Catto, A. Z. Simões, J. R. Sambrano, and E. Longo, ACS Appl. Mater. Interfaces 13, 4605 (2021).

  17. M.A. Almessiere, Y. Slimani, A.D. Korkmaz, A. Baykal, H. Güngüneş, H. Sözeri, S.E. Shirsath, S. Güner, S. Akhtar, A. Manikandan, RSC Adv. 9, 30671 (2019)

    Article  ADS  Google Scholar 

  18. M. A. Almessiere, B. Ünal, Y. Slimani, A. D. Korkmaz, A. Baykal, and I. Ercan, Results Phys. 15, 102755 (2019).

  19. M.A. Almessiere, Y. Slimani, S. Güner, A. Baykal, I. Ercan, J. Rare Earths 37, 871 (2019)

    Article  Google Scholar 

  20. Y. Slimani, B. Unal, M. A. Almessiere, A. D. Korkmaz, S. E. Shirsath, G. Yasin, A. V. Trukhanov, and A. Baykal, Results Phys. 17, 103061 (2020).

  21. Yunasfi, Mashadi, A. Mulyawan, W.A. Adi, J. Electron. Mater. 49, 7272 (2020)

    Article  ADS  Google Scholar 

  22. W. A. Adi and Yunasfi, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 262, 114760 (2020).

  23. Yunasfi, Mashadi, and A. Mulyawan, J. Teknol. 81, 21 (2019).

  24. Mashadi, Yunasfi, and A. Mulyawan, J. Teknol. 80, 147 (2018).

  25. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, L.B. Kong, J. Alloys Compd. 701, 841 (2017)

    Article  Google Scholar 

  26. S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, J. Phys. Chem. Solids 91, 136 (2016)

    Article  ADS  Google Scholar 

  27. W. A. Adi, Yunasfi, Mashadi, D. S.Winatapura, A. Mulyawan, Y. Sarwanto, Y. E. Gunanto, Y. Taryana, in Intech Open (Intech Open, 2019), pp. 1–18.

  28. M. Chireh, M. Naseri, A. Kamalianfar, Appl. Phys. A Mater. Sci. Process. 126, 2 (2020)

    Article  Google Scholar 

  29. M.N. Akhtar, M.A. Khan, J. Magn. Magn. Mater. 460, 268 (2018)

    Article  ADS  Google Scholar 

  30. A. B. Kadam, V. K. Mande, S. B. Kadam, R. H. Kadam, S. E. Shirsath, and R. B. Borade, J. Alloys Compd. 840, 155669 (2020).

  31. M.M.N. Ansari, S. Khan, N. Ahmad, J. Magn. Magn. Mater. 465, 81 (2018)

    Article  ADS  Google Scholar 

  32. C. Murugesan, B. Sathyamoorthy, G. Chandrasekaran, Phys. Scr. 90, 85809 (2015)

    Article  Google Scholar 

  33. Y. He, S. Pan, J. Yu, J. Rare Earths 38, 749 (2020)

    Article  Google Scholar 

  34. T. Shang, Q. Lu, L. Chao, Y. Qin, Y. Yun, G. Yun, Appl. Surf. Sci. 434, 234 (2018)

    Article  ADS  Google Scholar 

  35. Yunasfi, M. Adha, Nurhasni, J. Ilmu Dasar 19, 17 (2018).

    Article  Google Scholar 

  36. Yunasfi, I. Racmawati, Mashadi, W. A. Adi, N. Arofah, Metalurgi 33, 55 (2018).

  37. Y. Slimani, E. Hannachi, A. Hamrita, M. K. Ben Salem, F. Ben Azzouz, A. Manikandan, and M. Ben Salem, Ceram. Int. 44, 19950 (2018).

  38. Y. Slimani, M. A. Almessiere, A. D. Korkmaz, S. Guner, H. Güngüneş, M. Sertkol, A. Manikandan, A. Yildiz, S. Akhtar, S. E. Shirsath, and A. Baykal, Ultrason. Sonochem. 59, (2019).

  39. M.A. Almessiere, Y. Slimani, A. Baykal, Ceram. Int. 45, 963 (2019)

    Article  Google Scholar 

  40. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, and T. Alagesan, J. Magn. Magn. Mater. 486, 165254 (2019).

  41. S. I. Ahmad, S. A. Ansari, and D. Ravi Kumar, Mater. Chem. Phys. 208, 248 (2018).

  42. A. Mulyawan, S. Mustofa, Deswita, R. A. Ajiesastra, and W. A. Adi, J. Supercond. Nov. Magn. (2021).

  43. Y. Slimani, M. A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, and F. Ben Azzouz, Ceram. Int. 45, 2621 (2019).

  44. C. Murugesan, G. Chandrasekaran, RSC Adv. 5, 73714 (2015)

    Article  ADS  Google Scholar 

  45. B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001)

    Article  Google Scholar 

  46. S.A. Hassanzadeh-Tabrizi, S. Behbahanian, J. Amighian, J. Magn. Magn. Mater. 410, 242 (2016)

    Article  ADS  Google Scholar 

  47. M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, A. Manikandan, J. Magn. Magn. Mater. 466, 238 (2018)

    Article  ADS  Google Scholar 

  48. M.K. Kokare, N.A. Jadhav, Y. Kumar, K.M. Jadhav, S.M. Rathod, J. Alloys Compd. 748, 1053 (2018)

    Article  Google Scholar 

  49. A. A. A. Qahtan, S. Husain, A. Somvanshi, M. Fatema, and W. Khan, J. Alloys Compd. 843, 155637 (2020).

  50. A. V. Trukhanov, K. A. Astapovich, M. A. Almessiere, V. A. Turchenko, E. L. Trukhanova, V. V. Korovushkin, A. A. Amirov, M. A. Darwish, D. V. Karpinsky, D. A. Vinnik, D. S. Klygach, M. G. Vakhitov, M. V. Zdorovets, A. L. Kozlovskiy, and S. V. Trukhanov, J. Alloys Compd. 822, 153575 (2020).

  51. R. Peña-Garcia, Y. Guerra, F. E. P. Santos, L. C. Almeida, and E. Padrón-Hernández, J. Magn. Magn. Mater. 492, 165650 (2019).

  52. M.N. Akhtar, A.B. Sulong, M.N. Akhtar, M.A. Khan, J. Rare Earths 36, 156 (2018)

    Article  Google Scholar 

  53. S. Kumar, S. Supriya, R. Pandey, L.K. Pradhan, R.K. Singh, M. Kar, J. Magn. Magn. Mater. 458, 30 (2018)

    Article  ADS  Google Scholar 

  54. M. I. A. Abdel Maksoud, A. El-Ghandour, A. H. Ashour, M. M. Atta, S. Abdelhaleem, A. H. El-Hanbaly, R. A. Fahim, S. M. Kassem, M. S. Shalaby, and A. S. Awed, J. Rare Earths 39, 75 (2021).

  55. A.D. Korkmaz, S. Güner, Y. Slimani, H. Gungunes, M. Amir, A. Manikandan, A. Baykal, J. Supercond. Nov. Magn. 32, 1057 (2019)

    Article  Google Scholar 

  56. K. Qian, Z. Yao, H. Lin, J. Zhou, A.A. Haidry, T. Qi, W. Chen, X. Guo, Ceram. Int. 46, 227 (2020)

    Article  Google Scholar 

  57. M. A. Almessiere, Y. Slimani, A. V. Trukhanov, A. Baykal, H. Gungunes, E. L. Trukhanova, S. V. Trukhanov c, and V. G. Kostishin, J. Ind. Eng. Chem. 90, 251 (2020).

  58. T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Nanoscale 6, 2447 (2014)

    Article  ADS  Google Scholar 

  59. M. Rostami and M. H. Majles Ara, Ceram. Int. 45, 7606 (2019).

  60. M. K. Dmour, E. S. Al-Hwaitat, Y. Maswadeh, I. Bsoul, and S. H. Mahmood, J. Alloys Compd. 836, 155396 (2020).

Download references

Acknowledgements

This work was funded by the program for research and development of smart-magnetic materials, Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency, Indonesia.

Author information

Authors and Affiliations

Authors

Contributions

Yunasfi involved in conceptualization, methodology, formal analysis, writing–original draft, and writing–review & editing. AM involved in investigation, formal analysis, visualization, writing–original draft, and writing–review & editing. Mashadi involved in investigation and visualization. DSW involved in investigation and visualization. WAA involved in validation, supervision, and writing–review & editing.

Corresponding author

Correspondence to Yunasfi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 12503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunasfi, Mulyawan, A., Mashadi et al. Magnetic and microwave absorption properties of La3+-substituted manganese ferrites synthesized via solid-state reaction method. Appl. Phys. A 127, 763 (2021). https://doi.org/10.1007/s00339-021-04907-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04907-w

Keywords

Navigation