Skip to main content
Log in

Irradiation with phosphorus ions modifies the structure and tunable band-gap of a hexagonal AlN thin film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Aluminum nitride (AlN) thin films were prepared via Metal organic chemical vapor deposition (MOCVD). The as-grown films were implanted by constant 700 keV energy and swift P ions of influences in different ranges from 1 × 1013, 1 × 1014 to 5 × 1014 ionscm−2 with the help of ion beam analysis. The intensity of the thin film decreases with increasing ion fluence, and a decrease in crystallinity takes place at higher ions fluence 5 × 1014 ionscm−2. The presence of impurities has been stated to be directly related to the crystalline properties of the samples. Lattice amorphization is observed for the sample irradiated with a fluence of 5 × 1014 ionscm−2, which is also confirmed by X-ray diffraction (XRD) analysis. Rutherford backscattering spectroscopy (RBS) was used to determine the composition and thickness of the thin films. The irradiation has evolved changes in the microstructure and optical properties with changes in the band-gap of the samples. We report a tunable band-gap with increasing in P ion doses and suggest that the modifications in structural and optical properties of thin films can be controlled by optimizing the implantation conditions. The latter results illustrate one of the most significant advantages of thin film surface acoustic waves (SAW) technology, namely one can exploit both the piezoelectric properties of the film and the acoustic properties of the substrate and hence devise components with superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Yanagida, Y. Fujimoto, N. Kawaguchi, S. Yanagida, Dosimeter properties of AlN. J. Ceram. Soc. Jpn. 121(1420), 988–991 (2013)

    Article  Google Scholar 

  2. S.J. Zinkle, V.A. Skuratov, D.T. Hoelzer, On the conflicting roles of ionizing radiation in ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 191(1–4), 758–766 (2002)

    Article  ADS  Google Scholar 

  3. C. Lu, B.D. Hiscox, K.A. Terrani, N.R. Brown, Fully ceramic microencapsulated fuel in prismatic high temperature gas-cooled reactors: analysis of reactor performance and safety characteristics. Ann. Nucl. Energy 114, 277–287 (2018)

    Article  Google Scholar 

  4. I. Kim, L. Jiao, F. Khatkhatay, M.S. Martin, J. Lee, L. Shao, H. Wang, Size-dependent radiation tolerance in ion irradiated TiN/AlN nanolayer films. J. Nucl. Mater. 441(1–3), 47–53 (2013)

    Article  ADS  Google Scholar 

  5. R. Yu, G. Liu, G. Wang, C. Chen, M. Xu, H. Zhou, L. Zhang, Ultrawide-band-gap semiconductor AlN crystals: growth and applications. J. Mater. Chem. C 9(6), 1852–1873 (2021)

    Article  Google Scholar 

  6. Z. He, P. Lian, Y. Song, Z. Liu, J. Song, J. Zhang, W. Liu, Protecting nuclear graphite from liquid fluoride salt and oxidation by SiC coating derived from polycarbosilane. J. Eur. Ceram. Soc. 38(2), 453–462 (2018)

    Article  Google Scholar 

  7. K. Dukenbayev, A. Kozlovskiy, I. Korolkov, M. Zdorovets, Investigation of radiation resistance of AlN ceramics. Vacuum 159, 144–151 (2019)

    Article  ADS  Google Scholar 

  8. B. Liu, J. Gao, K.M. Wu, C. Liu, Preparation and rapid thermal annealing of AlN thin films grown by molecular beam epitaxy. Solid State Commun. 149(17–18), 715–717 (2009)

    Article  ADS  Google Scholar 

  9. Y. Lu, X. Liu, X. Wang, D.C. Lu, D. Li, X. Han, Z. Wang, Influence of the growth temperature of the high-temperature AlN buffer on the properties of GaN grown on Si (1 1 1) substrate. J. Cryst. Growth 263(1–4), 4–11 (2004)

    Article  ADS  Google Scholar 

  10. M. Clement, E. Iborra, J. Sangrador, A. Sanz-Hervás, L. Vergara, M. Aguilar, Influence of sputtering mechanisms on the preferred orientation of aluminum nitride thin films. J. Appl. Phys. 94(3), 1495–1500 (2003)

    Article  ADS  Google Scholar 

  11. C. Liu, Z. Hu, Q. Wu, X. Wang, Y. Chen, H. Sang, N. Xu, Vapor− solid growth and characterization of aluminum nitride nanocones. J. Am. Chem. Soc. 127(4), 1318–1322 (2005)

    Article  Google Scholar 

  12. Q. Wu, Z. Hu, X. Wang, Y. Lu, X. Chen, H. Xu, Y. Chen, Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J. Am. Chem. Soc. 125(34), 10176–10177 (2003)

    Article  Google Scholar 

  13. Q. Wu, Z. Hu, X. Wang, Y. Chen, Y. Lu, Synthesis and optical characterization of aluminum nitride nano-belts. J. Phys. Chem. B 107(36), 9726–9729 (2003)

    Article  Google Scholar 

  14. Q. Wu, Z. Hu, X. Wang, Y. Lu, K. Huo, S. Deng, Y. Chen, Extended vapor–liquid–solid growth and field emission properties of aluminium nitride nanowires. J. Mater. Chem. 13(8), 2024–2027 (2003)

    Article  Google Scholar 

  15. J.P. Zhang, H.M. Wang, W.H. Sun, V. Adivarahan, S. Wu, A. Chitnis, M.A. Khan, High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes. J. Electron. Mater. 32(5), 364–370 (2003)

    Article  ADS  Google Scholar 

  16. N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu, R.G. Wilson, Unconventional carrier-mediated ferromagnetism above room temperature in ion-implanted (Ga Mn) P C. Phys. Rev. Lett. 89(10), 107203 (2002)

    Article  ADS  Google Scholar 

  17. S.O. Kucheyev, J.S. Williams, J. Zou, C. Jagadish, M. Pophristic, S. Guo, M.O. Manasreh, Ion-beam-produced damage and its stability in AlN films. J. Appl. Phys. 92(7), 3554–3558 (2002)

    Article  ADS  Google Scholar 

  18. A. Farooq, S.O. Aisida, A. Jalil, C.-F. Dee, P.C. Ooi, M. Sorokin, N. Jabeen, I. Ahmad, T.-K. Zhao, C ions irradiation induced defects analysis and effects on optical properties of TiO2 Nanoparticles. J. Alloys Compd. 863, 158635 (2021)

    Article  Google Scholar 

  19. O. Aisida Samson, R.M. Obodo, M. Arshad, M. Iram, A. Ishaq, F.I. Ezema, Z. Ting-kai, M. Maaza, Irradiation-induced structural changes in ZnO nanowires. Nucl. Instrum. Methods Phys. Res., Sect. B 458, 61–71 (2019)

    Article  ADS  Google Scholar 

  20. R.M. Frazier, G.T. Thaler, C.R. Abernathy, S.J. Pearton, M.L. Nakarmi, K.B. Nam, R.G. Wilson, Transition metal ion implantation into AlGaN. J. Appl. Phys. 94(8), 4956–4960 (2003)

    Article  ADS  Google Scholar 

  21. S. Khan, G. Husnain, I. Ahmad, K. Khan, M. Usman, S. Riaz Structural characteristics of Ni {sup+}-implanted AlN thin film. Surface topography (Online), 2. (2014)

  22. M.V. Sorokin, K. Schwartz, S.O. Aisida, I. Ahmad, A.M. Sorokin, M. Izerrouken, Distribution of color centers around swift ion trajectories in lithium fluoride crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 485, 32–35 (2020)

    Article  ADS  Google Scholar 

  23. A. Batool, S.O. Aisida, H. Javed, H. Shehla, I. Mahmoud, F. Ayub, A. Ishaq, Z. Ting-kai, In-situ investigation of point defects kinetics in LiF using ion luminescence technique. Nucl. Instrum. Methods Phys. Res., Sect. B 466(26), 52–55 (2020)

    Article  ADS  Google Scholar 

  24. M. Usman, A. Nazir, T. Aggerstam, M.K. Linnarsson, A. Hallén, Electrical and structural characterization of ion implanted GaN. Nucl. Instrum. Methods Phys. Res., Sect. B 267(8–9), 1561–1563 (2009)

    Article  ADS  Google Scholar 

  25. A. Batool, M. Izerrouken, S.O. Aisida, J. Hussain, M. Ishaq Ahmad, Q. Afzal, A. Faridi, T.-K. Zhao, Effect of Ca colloids on in-situ ionoluminescence of CaF2 single crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 476, 40–43 (2020)

    Article  ADS  Google Scholar 

  26. K. Ichino, H. Yoshida, T. Kawai, H. Matsumoto, H. Kobayashi, Molecular Beam Epitaxy of Phosphorus-Doped ZnS. Journal of Korean Physical Society 53(925), 2939 (2008)

    Article  ADS  Google Scholar 

  27. Y. W. Heo, K. Ip, S. J. Park, S. J. Pearton, D. P. Norton, Shallow donor formation in phosphorus-doped ZnO thin films. Applied Physics A, Materials Science Processing 78. (2004)

  28. S. Koizumi, T. Teraji, H. Kanda, Phosphorus-doped chemical vapor deposition of diamond. Diam. Relat. Mater. 9(3–6), 935–940 (2000)

    Article  ADS  Google Scholar 

  29. T.T. Thabethe, T.T. Hlatshwayo, E.G. Njoroge, T.G. Nyawo, J.B. Malherbe, The effect of thermal annealing in a hydrogen atmosphere on tungsten deposited on 6HSiC. Vacuum 129, 161–165 (2016)

    Article  ADS  Google Scholar 

  30. A. Majid, A. Ali, J.J. Zhu, Y.T. Wang, H. Yang, An evidence of defect gettering in GaN. Phys. B 403(13–16), 2495–2499 (2008)

    Article  ADS  Google Scholar 

  31. F. Aksoy, R. Kayalı, M. Öztaş, M. Bedir, The morphology and structural properties of InP thin films deposited by spray pyrolysis method. J. Phys. Chem. Solids 69(4), 835–838 (2008)

    Article  ADS  Google Scholar 

  32. M. Zdorovets, K. Dukenbayev, A. Kozlovskiy, I. Kenzhina, Defect formation in AlN after irradiation with He2+ ions. Ceram. Int. 45(7), 8130–8137 (2019)

    Article  Google Scholar 

  33. A.L. Kozlovskiy, D. Shlimas, I.E. Kenzhina, D.B. Borgekov, M.V. Zdorovets, Dynamics of radiation damage in AlN ceramics under high-dose irradiation, typical for the processes of swelling and hydrogenation. Curr. Comput.-Aided Drug Des. 10(6), 546 (2020)

    Google Scholar 

  34. A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, M.V. Zdorovets, The influence of the energy of incident protons on the defect formation and radiation resistance of AlN ceramics. Solid State Sci. 107, 106367 (2020)

    Article  Google Scholar 

  35. T. Gladkikh, A. Kozlovskiy, K. Dukenbayev, M. Zdorovets, Radiation resistance of AlN ceramics as a result of irradiation with low-energy C2+ ions. Mater. Charact. 150, 88–97 (2019)

    Article  Google Scholar 

  36. S. Khan, G. Husnain, I. Ahmad, K. Khan, M. Usman, S. Riaz, Structural characteristics of Ni+-implanted AlN thin film. Surf. Topogr.: Metrol. Prop. 2(3), 035007 (2014)

    Article  ADS  Google Scholar 

  37. A. Mele, A. Giardini, T.M. Di Palma, C. Flamini, H. Okabe, R. Teghil, Preparation of the group III nitride thin films AlN, GaN, InN by direct and reactive pulsed laser ablation. Int. J. Photoenergy 3(3), 111–121 (2001)

    Article  Google Scholar 

  38. L.R. Doolittle, Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl. Instrum. Methods Phys. Res., Sect. B 9(3), 344–351 (1985)

    Article  ADS  Google Scholar 

  39. G. Husnain, C. Tian-Xiang, F. Tao, Y. Shu-De, Study of depth-dependent tetragonal distortion of quaternary AlInGaN epilayer by Rutherford backscattering/channeling. Chin. Phys. B. 19(8), 087205 (2010)

    Article  ADS  Google Scholar 

  40. G. Husnain, I. Ahmad, S.D. Yao, H.M. Rafique, A.A. Umar, C.F. Dee, Depth-dependent tetragonal distortion study of AlGaN epilayer thin film using RBS and channeling technique. Mod. Phys. Lett. B 26(14), 1250086 (2012)

    Article  ADS  Google Scholar 

  41. M.P. Thompson, G.W. Auner, T.S. Zheleva, K.A. Jones, S.J. Simko, J.N. Hilfiker, Deposition factors and band gap of zinc-blende AlN. J. Appl. Phys. 89(6), 3331–3336 (2001)

    Article  ADS  Google Scholar 

  42. A. Kozlovskiy, K. Dukenbayev, I. Kenzhina, D. Tosi, M. Zdorovets, Dynamics of changes in structural properties of AlN ceramics after Xe+ 22 ion irradiation. Vacuum 155, 412–422 (2018)

    Article  ADS  Google Scholar 

  43. A. Mahmood, R. Machorro, S. Muhl, J. Heiras, F.F. Castillon, M.H. Farıas, E. Andrade, Optical and surface analysis of DC-reactive sputtered AlN films. Diam. Relat. Mater. 12(8), 1315–1321 (2003)

    Article  ADS  Google Scholar 

  44. S.C. Shi, C.F. Chen, S. Chattopadhyay, K.H. Chen, B.W. Ke, L.C. Chen, B. Berzina, Luminescence properties of wurtzite AlN nanotips. Appl. Phys. Lett. 89(16), 163127 (2006)

    Article  ADS  Google Scholar 

  45. B. Berzina, L. Trinkler, J. Sils, K. Atobe, Luminescence mechanisms of oxygen-related defects in AlN. Radiat. Eff. Defects Solids 157(6–12), 1089–1092 (2002)

    Article  ADS  Google Scholar 

  46. G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34(2), 321–335 (1973)

    Article  ADS  Google Scholar 

  47. G.H. Peslherbe, W.L. Hase, Statistical anharmonic unimolecular rate constants for the dissociation of fluxional molecules: Application to aluminum clusters. J. Chem. Phys. 105(17), 7432–7447 (1996)

    Article  ADS  Google Scholar 

  48. T. Chartier, J.M. Laurent, D.S. Smith, F. Valdivieso, P. Goeuriot, F. Thevenot, Oxidation resistance and electrical properties of silicon carbide added with Al2O3, AlN, Y2O3 and NiO. J. Mater. Sci. 36(15), 3793–3800 (2001)

    Article  ADS  Google Scholar 

  49. P.B. Madakson, Surface stresses and the hardness of ion implanted aluminium. J. Phys. D Appl. Phys. 18(3), 531 (1985)

    Article  ADS  Google Scholar 

  50. K. Bordo, H.G. Rubahn, Effect of deposition rate on structure and surface morphology of thin evaporated Al films on dielectrics and semiconductors. Mater. Sci. 18(4), 313–317 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research support by the National Center of Physics (NCP), Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ajmal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.A., Husnain, G., Ajmal, M. et al. Irradiation with phosphorus ions modifies the structure and tunable band-gap of a hexagonal AlN thin film. Appl. Phys. A 127, 719 (2021). https://doi.org/10.1007/s00339-021-04879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04879-x

Keywords

Navigation