Skip to main content

Advertisement

Log in

Study of ZnO room temperature NO2 sensor under illumination prepared by auto-combustion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO nanoparticles have been prepared by auto-combustion method. Morphological and structural properties of the prepared samples were investigated by SEM, XRD, Raman and XPS characterizations. The XRD diffractogram of the sample indicates that ZnO has a hexagonal wurtzite structure. The crystallites average size, calculated from the Williamson–Hall plot, was 69.3 nm and the estimated by the SEM image (76.86 nm). Raman investigation indicates different modes of atomic displacement which correspond to longitudinal/transversal optical components with different frequencies. These modes are due to the macroscopic electric fields associated with the basic phonon of hexagonal ZnO. The XPS spectra indicate the presence of Zn and O in the structure with a small number of interstitial Zn2+, oxygen vacancies (Vo), and a negligible amount of chemical bonds with carbon (=CO …), confirmed by FTIR spectroscopy. The UV absorbance and reflectance spectra show a high absorbance with gap energy of 3.17 eV, estimated by Tauc's model. The a.c. electrical spectroscopy can be described by the Jonscher universal power-law. The charge carriers move according to the correlated barrier hopping pattern over the dispersive region. At room temperature, the conductivity of ZnO is high (~ 8 × 10–6 S.m−1) making it promises for gas detection applications. The sensor was prepared by spraying the suspension of ZnO nanopowders on alumina substrates with pre-deposited gold interdigitated electrodes. The sensor responses of NO2, for concentrations of 0.5, 0.75 and 1 ppm, were investigated at room temperature under illumination with different wavelengths. The best response of the sensor was obtained for a concentration of 1 ppm NO2 excited by 400 nm (purple) and 380 nm (UV) wavelengths, which were 91 and 88 with response/recovery times equal to 4/6.7 min and 4.4/3.3 min. Higher responses at the lower wavelength are due to the higher excitation energy which tends to excite more electrons, at the material surface, subsequently participating in the detection mechanism with gas molecules

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Zhang, M. Debliquy, A. Boudiba, H. Liao, C. Coddet, Sens. Actuators B Chem. 144, 280–288 (2010)

    Article  Google Scholar 

  2. P. Su, T. Pan, Mater. Chem. Phys. 125, 351–357 (2011)

    Article  Google Scholar 

  3. S. Wei, Y. Xing, Y. Li, Y. Zhao, W. Du, M. Zhou, Vacuum 129, 13–19 (2016)

    Article  ADS  Google Scholar 

  4. C. Zhang, O. Overschelde, A. Boudiba, R. Snyders, M. Olivier, M. Debliquy, Mater. Chem. Phys. 133, 588–591 (2012)

    Article  Google Scholar 

  5. H. Moon, S. Han, M. Kang, W. Jung, B. Kwon, C. Kim, T. Lee, S. Lee, S. Baek, J. Kim, H. Park, C. Kang, Sens. Actuators B 229, 92–99 (2016)

    Article  Google Scholar 

  6. M. Benamara, J. Massoudi, H. Dahman, E. Dhahri, L. El Mir, A. Ly, M. Debliquy, D. Lahem, J. Mater. Sci.: Mater. Electron. 31(17), 14249–14260 (2020)

  7. X. Geng, C. Zhang, M. Debliquy, Ceram. Int. 42, 4845–4852 (2016)

    Article  Google Scholar 

  8. J. Zhang, X. Liu, G. Neri, N. Pinna, Adv. Mater. 28, 795–831 (2016)

    Article  Google Scholar 

  9. W.Z. Wang, T. Coyle, D. Zhao, J. Therm. Spray. Technol. 23, 827–832 (2014)

    Article  ADS  Google Scholar 

  10. J. Saura, Sens. Actuators B: Chem. 17, 211–214 (2001)

    Article  Google Scholar 

  11. P. Camagni, G. Faglia, P. Galinetto, C. Perego, G. Samoggia, G. Sberveglieri, Sens. Actuators B Chem. 31, 99–103 (1996)

    Article  Google Scholar 

  12. E. Comini, G. Faglia, G. Sberveglieri, Sens. Actuators B Chem. 78, 73–77 (2001)

    Article  Google Scholar 

  13. B.P.J. de Lacy Costello, R.J. Ewen, N.M. Ratcliffe, M. Richards, Sens. Actuators B Chem. 134, 945–952 (2008)

    Article  Google Scholar 

  14. K. Anothainart, M. Burgmair, A. Karthigeyan, M. Zimmer, I. Eisele, Sens. Actuators B: Chem. 93, 580–584 (2003)

    Article  Google Scholar 

  15. J.D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez et al., Sens. Actuators B Chem. 140, 337–341 (2009)

    Article  Google Scholar 

  16. C. Zhang, A. Boudiba, P. De Marco, R. Snyders, M.G. Olivier, M. Debliquy, Sens. ActuatorsB:Chem 181, 395–401 (2013)

    Article  Google Scholar 

  17. M. Benamara, E. Gómez, R. Dhahri, A. Serrà, Toxins 13, 66–82 (2021)

    Article  Google Scholar 

  18. X. Geng, J. You, C. Zhang, J. Alloys Compd. 687, 286–293 (2016)

    Article  Google Scholar 

  19. J. Rodríguez-Carvajal, Physica B 192(1–2), 55–69 (1993)

    Article  ADS  Google Scholar 

  20. D. Bouokkeze, J. Massoudi, W. Hzez, M. Smari, A. Bougoffa, K. Khirouni, L. Bessais, RSC Adv. 9(70), 40940–40955 (2019)

    Article  ADS  Google Scholar 

  21. D.K. Dubey, D.N. Singh, S. Kumar, C. Nayak, P. Kumbhakar, S.N. Jha, D. Bhattacharya, A.K. Ghosh, S. Chatterjee, RSC Adv. 6(27), 22852–22867 (2016)

    Article  ADS  Google Scholar 

  22. V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, A. Li Bassi, J. Appl. Phys. 115(7), 073508 (2014)

    Article  ADS  Google Scholar 

  23. D.N. Montenegro, V. Hortelano, O. Martínez, M.C. Martínez-Tomas, V. Sallet, V. Muñoz-Sanjosé, J. Jiménez, J. Phys. D: Appl. Phys. 46(23), 235302 (2013)

    Article  ADS  Google Scholar 

  24. E.R. Kumara, C. Srinivasb, M.S. Seehrac, M. Deeptyb, I. Pradeepe, A.S. Kamzin, M.V.K. Meharg, N.K. Mohanh, Sens. Actuators A: Physic. 279, 10–16 (2018)

    Article  Google Scholar 

  25. S. Jaballah, M. Benamara, H. Dahman, A. Ly, D. Lahem, M. Debliquy, L. EL Mir, Mater. Chem. Phys. 31(11), 8230–8239 (2020)

  26. K. Jhansi, N. Jayarambabu, K. P. Reddy, N. M. Reddy, R. P. Suvarna, K. V. Rao, B. Siva kumari, Int. J. Multi. Adv. Res. Trends 2, 273–282 (2015)

  27. W. Li, G. Wang, C. Chen, J. Liao, Z. Li, Nanomaterials 7(1), 20 (2017)

    Article  Google Scholar 

  28. J. Das, S.K. Pradhan, D.R. Sahu, D.K. Mishra, S.N. Sarangi, B.B. Nayak, S. Verma, B.K. Roul, Phys. B 405(10), 2492–2497 (2010)

    Article  ADS  Google Scholar 

  29. X. Geng, C. Zhang, Y. Luo, M. Debliquy, Appl. Surf. Sci. 401, 248–255 (2017)

    Article  ADS  Google Scholar 

  30. C. Zhang, X. Geng, H. Liao, C. Li, M. Debliquy, Sens. Actuators B: Chem. 242, 102–111 (2017)

    Article  Google Scholar 

  31. A. Celebioglu, S. Vempati, C. Ozgit-Akgun, N. Biyikli, T. Uyar, RSC Adv. 4(106), 61698–61705 (2014)

    Article  ADS  Google Scholar 

  32. X. Geng, P. Lu, C. Zhang, D. Lahem, M.G. Olivier, M. Debliquy, Sens. Actuators B: Chem. 282, 690–702 (2019)

    Article  Google Scholar 

  33. S. Jaballah, M. Benamara, H. Dahman, D. Lahem, M. Debliquy, L. El Mir, J. Mater. Sci.: Mater. Electron. 31(11), 8230–8239 (2020)

  34. B. Xu, Q. Zhang, S. Yuan, M. Zhang, T. Ohno, Chem. Eng. J. 260, 126–132 (2015)

    Article  Google Scholar 

  35. B. Tiss, M. Erouel, N. Bouguila, M. Kraini, K. Khirouni, J. Alloys Compd. 771, 60–66 (2019)

    Article  Google Scholar 

  36. K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940–8948 (2016)

    Article  Google Scholar 

  37. A. Ghosh, Phys. Rev. B 42, 1388 (1990)

    Article  ADS  Google Scholar 

  38. A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, J. Alloys Compd. 622, 687–694 (2015)

    Article  Google Scholar 

  39. L. Chouiref, S. Jaballah, M. Erouel, N. Moutia, W. Hzez, I. Ghiloufi, L. El Mir, J. Mater. Sci. Mater. Electron. 31(16), 13899–13908 (2020)

    Article  Google Scholar 

  40. N. Assoudi, W. Hzez, R. Dhahri, I. Walha, H. Rahmouni, K. Khirouni, E. Dhahri, J. Mater. Sci. Mater. Electron. 29, 20113–20121 (2018)

    Article  Google Scholar 

  41. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388–6394 (2011)

    Article  Google Scholar 

  42. A. Dhara, S. Sain, S. Das, S.K. Pradhan, Ceram. Int. 44, 7110–7121 (2018)

    Article  Google Scholar 

  43. D. Sinclair, Boletín la Soc. Española Cerámica y Vidr. 34, 55–65 (1995)

    Google Scholar 

  44. R. Chtourou, B. Louati, K. Guidara, J. Alloys. Compd. 732, 286–292 (2018)

    Article  Google Scholar 

  45. C.G. Koops, Phys. Rev. 83, 121–124 (1951)

    Article  ADS  Google Scholar 

  46. D. Johnson, ZPlot, Z-View Electrochemical Impedance Software, Version 2.3 b (Scribner Associates Inc, North Carolina, 2000)

    Google Scholar 

  47. F.B. Abdallah, A. Benali, S. Azizi, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, J. Mater. Sci. Mater. Electron. 30(9), 8457–8470 (2019)

    Article  Google Scholar 

  48. N. Barsan, U.D.O. Weimar, J. Electroceram. 7, 143–167 (2002)

    Article  Google Scholar 

  49. L. Deng, X. Ding, D. Zeng, S. Tian, H. Li, C. Xie, Sens. Actuators B Chem. 16(3), 260–266 (2012)

    Article  Google Scholar 

  50. A. Giberti, V. Guidi, C. Malagù, in: The 14th International Meeting on Chemical Sensors, 395–401 (2012)

  51. A. Giberti, C. Malagù, V. Guidi, Sens. Actuators B:Chem. 165, 59–61 (2012)

    Article  Google Scholar 

  52. D. Haridas, A. Chowdhuri, K. Sreenivas, V. Gupta, Sens. Actuators B: Chem. 153, 152–157 (2011)

    Article  Google Scholar 

  53. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47–154 (2005)

    Article  ADS  Google Scholar 

  54. H.-J. Lim, D.Y. Lee, Y.-J. Oh, Sens. Actuators B: Chem. 125, 405–410 (2006)

    Article  Google Scholar 

  55. S. Bai, D. Li, D. Han, R. Luo, A. Chen, C.L. Chung, Sens. Actuators B: Chem. 150, 749–755 (2010)

    Article  Google Scholar 

  56. A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, Sens. Actuators B Chem. 171–172, 25–42 (2012)

    Article  Google Scholar 

  57. I.B. Pollack, B.M. Lerner, T.B. Ryerson, J. Atmos. Chem. 65, 111–125 (2011)

    Article  Google Scholar 

  58. R.K. Sonker, S.R. Sabhajeet, S. Singh, B.C. Yadav, Mater. Lett. 152, 189–191 (2015)

    Article  Google Scholar 

  59. X. Pan, X. Zhao, J. Chen, A. Bermak, Z. Fan, Sens. Actuators B chem. 206, 764–771 (2015)

    Article  Google Scholar 

  60. C. Zhang, X. Geng, J. Li, Y. Luo, P. Lu, Sens. Actuators B chem. 248, 886–893 (2017)

    Article  Google Scholar 

  61. L. Yu, F. Guo, S. Liu, B. Yang, Y. Jiang, L. Qi, X. Fan, J. Alloys Compd. 682, 352–356 (2016)

    Article  Google Scholar 

  62. S. Fan, A.K. Srivastava, V.P. Dravid, Sens. Actuators B chem. 144, 159–163 (2010)

    Article  Google Scholar 

  63. S. Bernardini, M.H. Benchekroun, K. Aguir, O. Margeat, J. Ackermann, C. Videlot-Ackermann, Sens. Transducers 222(6), 1–5 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Soreto Teixeira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamara, M., Teixeira, S.S., Graça, M.P.F. et al. Study of ZnO room temperature NO2 sensor under illumination prepared by auto-combustion. Appl. Phys. A 127, 706 (2021). https://doi.org/10.1007/s00339-021-04855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04855-5

Keywords

Navigation